• Title/Summary/Keyword: oxygen pressure

Search Result 1,962, Processing Time 0.024 seconds

The Effect of Pulmonary Rehabilitation in Patients with Chronic Lung Disease (만성 폐질환 환자에서의 호흡재활치료의 효과)

  • Choe, Kang Hyeon;Park, Young Joo;Cho, Won Kyung;Lim, Chae Man;Lee, Sang Do;Koh, Youn Suck;Kim, Woo Sung;Kim, Dong Soon;Kim, Won Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.5
    • /
    • pp.736-745
    • /
    • 1996
  • Background : It is known that pulmonary rehabilitation improves dyspnea and exercise tolerance in patient with chronic lung disease, although it does not improve pulmonary function. But there is a controversy whether this improvement after pulmonary rehabilitation is due to increased aerobic exercise capacity. We performed this study to evaluate the effect of pulmonary rehabilitation for 6 weeks on the pulmonary function, gas exchange, exercise tolerance and aerobic exercise capacity in patients with chronic lung disease. Methods : Pulmonary rehabilitations including education, muscle strengthening exercise and symptom-Umited aerobic exercise for six weeks, were performed in fourteen patients with chronic lung disease (COPD 11, bronchiectasis 1, IPF 1, sarcoidosis 1 ; mean age $57{\pm}4$ years; male 12, female 2). Pre- and post-rehabilitaion pulmonary function and exercise capacity were compared. Results: 1) Before the rehabilitation, FVC, $FEV_1$ and $FEF_{25-75%}$ of the patients were $71.5{\pm}6.4%$. $40.6{\pm}3.4%$ and $19.3{\pm}3.8%$ of predicted value respectively. TLC, FRC and RV were $130.3{\pm}9.3%$, $157.3{\pm}13.2%$ and $211.1{\pm}23.9%$ predicted respectively. Diffusing capacity and MVV were $59.1{\pm}1.1%$ and $48.6{\pm}6.2%$. These pulmonary functions did not change after pulmonary rehabilitation. 2) In the incremental exercise test using bicycle ergometer, maximum work rale ($57.7{\pm}4.9$) watts vs. $64.8{\pm}6.0$ watts, P=0.036), maximum oxygen consumption ($0.81{\pm}0.07$ L/min vs. $0.96{\mu}0.08$ L/min, P=0.009) and anaerobic threshold ($0.60{\pm}0.06$ L/min vs. $0.76{\mu}0.06$ L/min, P=0.009) were significantly increased after pulmonary rehabilitation. There was no improvement in gas exchange after rehabilitation. 3) Exercise endurances of upper ($4.5{\pm}0.7$ joule vs. $14.8{\pm}2.4$ joule, P<0.001) and lower extremity ($25.4{\pm}5.7$ joule vs. $42.6{\pm}7.7$ joule, P<0.001), and 6 minute walking distance ($392{\pm}35$ meter vs. $459{\pm}33$ meter, P<0.001) were significantly increased after rehabilitation. Maximum inspiratory pressure was also increased after rehabilitation ($68.5{\pm}5.4$ $CmH_2O$ VS. $80.4{\pm}6.4$ $CmH_2O$, P<0.001). Conclusion: The pulmonary rehabilitation for 6 weeks can improve exercise performance in patients with chronic lung disease.

  • PDF

Effects of Percutaneous Balloon Mitral Valvuloplasty on Static Lung Function and Exercise Performance (승모판협착증 환자에서 경피적 풍선확장판막성형술의 폐기능 및 운동부하 검사에 대한 효과)

  • Kim, Yong-Tae;Kim, Woo-Sung;Lim, Chae-Man;Chin, Jae-Yong;Koh, Youn-Suck;Kim, Jae-Joong;Park, Seong-Wook;Park, Seung-Jung;Lee, Jong-Koo;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.1
    • /
    • pp.1-10
    • /
    • 1994
  • Background: Patients with mitral stenosis(MS) have been demonstrated to have a variable degree of pulmonary dysfunction and exercise impairment. The hemodynamic changes of MS can be reversed after percutaneous mitral balloon valvuloplasty(PMV), but the extent and time course of the imporvement in pulmonary function and exercise capacity are not defined. Methods: In order to investigate the early(3 weeks or less)and late(3 months or more) effects of PMV on pulmonary function and determine if the pulmonary dysfunction is reversible even in patients with moderate to severe pulmonary hypertension, we performed the spirometry, measurements of diffusing capacity and lung volumes, and incremental exercise tests in patients with MS before and after PMV. Results: In 46 patients with MS(age: $40{\pm}12$years, male to female ratio: 1:2, mitral valve area: $0.8{\pm}0.2cm^2$) there was a significant increase in FVC(P<0.0025), $FEV_1$(P<0.001), $FEF_{25-75%}$(P<0.001, $FEF_{50%}$(P<0.001), PEF(P<0.0005), MVV(P<0.005), $\dot{V}O_2$max (P<0.0001), and AT(P<0.0001) after average 10 days of PMV. Also there was a significant decrease in DLco(P<0.0001) and DL/VA(P<0.0001). At later($5{\pm}2$months) follow-up in 11 patients, there was no further improvement in any parameters of pulmonary function and exercise test. Twenty nine patients with sinus rhythm were divided into 16 patients with pulmonary arterial pressure(PAP) more than 35mmHg and/or tricuspid regurgitation grade n or more(group A) and 13 patients with PAP less than 35mmHg(group B). Group A Patients had significantly lower FVC(P<0.001), $FEV_1$(P<0.001), DLco(P<0.05), $\dot{V}O_2$ max(P<0.025) and mitral valve area(P<0.025) than group B patients. Group A patients after PMV, showed significant increase in FVC(P<0.001), maximum $O_2$ pulse(P<0.00001) and $\dot{V}O_2$ max(P<0.00025). Both group showed an increase in AT(P<0.0001, P<0.005), but group A showed greater decrease in $\dot{V}E/\dot{V}O_2$ and $\dot{V}E/\dot{V}CO_2$ both at AT(P<0.001, P<0.001) and $\dot{V}O_2$ max(P<0.0001, P<0.0001) after PMV compared with group B. Conclusion: These data suggest that patients with MS can show increased pulmonary function and exercise performance within 1 month after PMV. Patients with moderate to severe pulmonary hypertension had a significant increase in exercise performance compared with those with mild to no pulmonary hypertension and it is thought to be related to a significat decrease of ventilation for a given oxygen consumption at maximum exercise.

  • PDF