• Title/Summary/Keyword: oxygen limitation

Search Result 101, Processing Time 0.026 seconds

Oxygen Barrier Coating with Carbon Interlayer on Polypropylene

  • Kim, Seong-Jin;Song, Eun-Gyeong;Jo, Gyeong-Sik;Yun, Tae-Gyeong;Mun, Myeong-Un;Lee, Gwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.210-210
    • /
    • 2012
  • Gas barrier coating from dense thin film deposition has been one of the important applications such as food-packaging and organic display. Especially for food-packaging, plastic container has been widely used due to its low price and high through-put in mass production. However, the plastic container with low surface energy like polypropylene (PP) has been limited to apply gas barrier coating. That is because a gas barrier coating could not adhere to PP due to its too low surface energy and high porosity of PP. In this research, we applied carbon coating consisting of Si and O as an interlayer between silicon oxide (SiOx) and PP. A carbon layer was found to provide better adhesion, which was experimentally proved by oxygen transmission rate (OTR) and SEM images. However, we also found that there is a limitation in the maximum thickness of a carbon layer and SiOx film due to their high stress level. For this conflict, we obtain the optimal thickness of a carbon layer and SiOx film showing optimal gas barrier property.

  • PDF

Air Fuel Ratio and Calculation According to Fuel Composition (III) -Comparison of Various Calculation Method- (연료 조성에 따른 공연비 산정 (III) - 공연비 계산방식간의 상호 비교 -)

  • Park Chanjun;Ohm Inyong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1147-1154
    • /
    • 2004
  • This paper is the third of several companion papers which compare the method of Air-Fuel ratio determination. In the previous works, Eltinge chart was expanded to arbitrary fuel composition as a reference exhaust composition. The compensation of unburned hydrocarbon in Eltinge chart and comparison of Spindt and Eltinge method were also discussed. In addition to Eltinge and Spindt's one, however, there are many methods which calculate Air-Fuel ratio from exhaust emission. Among these methods, carbon balance and oxygen balance are widely used in practice. In some applications, linear formula from statistical method is being used in the field due to its simplicity and convenience. In this paper, these various methods are evaluated and compared with Eltinge results and new linear formula is proposed for the gasoline fuel. The results show that the corrected carbon balance equation has excellent agreement with Eltinge and Spindt's one. On the other hands, the oxygen-balanced formula has a limitation according to the mixture state and AFR. For gasoline fuel, newly proposed linear equation has good compatibility with Eltinge and Spindt up to AFR 17.

Effect of Carrier Size on the Performance of a Three-Phase Circulating-Bed Biofilm Reactor for Removing Toluene in Gas Stream

  • Sang, Byoung-In;Yoo, Eui-Sun;Kim, Byung-J.;Rittmann, Bruce E.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1121-1129
    • /
    • 2008
  • A series of steady-state and short-term experiments on a three-phase circulating-bed biofilm reactor (CBBR) for removing toluene from gas streams were conducted to investigate the effect of macroporous-carrier size (1-mm cubes versus 4-mm cubes, which have the same total surface area) on CBBR performance. Experimental conditions were identical, except for the carrier size. The CBBR with 1-mm carriers (the 1-mm CBBR) overcame the performance limitation observed with the CBBR with 4-mm carriers (the 4-mm CBBR): oxygen depletion inside the biofilm. The 1-mm CBBR consistently had the superior removal efficiencies of toluene and COD, higher than 93% for all, and the advantage was greatest for the highest toluene loading, $0.12\;M/m^2-day$. The 1-mm carriers achieved superior performance by minimizing the negative effects of oxygen depletion, because they had 4.7 to 6.8 times thinner biofilm depths. The 1-mm carriers continued to provide protection from excess biomass detachment and inhibition from toluene. Finally, the 1-mm CBBR achieved volumetric removal capacities up to 300 times greater than demonstrated by other biofilters treating toluene and related volatile hydrocarbons.

Biosynthesis of polyhydroxybutyrate and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by bacillus thuringiensis R-510

  • Park, Sang-Kyu;Lee, Kang-Tae;Kim, Young-Baek;Rhee, Young-Ha
    • Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.127-133
    • /
    • 1997
  • Biosynthesis of polyhydroxybutyrate and copolymer consisting of 3-hydroxybutyrate and 3-hydroxyvalerate [poly(3HB-co-3HV)] by Bacillus thuringiensis R-510 grown with glucose or with mixtures of glucose and propionate was investigated. n-Alkanoic acids other than propionate were not precursors of 3HV units. The fraction of 3HV unit in the copolymer increased from 0 to 84 mol% of 3HV. Polymer yield decreased as the fraction of propionate was increased but the molecular weight distribution was not affected by the composition of carbon substrate. The minimum melting temperature (around 65.deg.C) of poly (3HB-co-3HV) copolymers was observed for the polymer bearing approximately 35 mol% of 3HV. Polyhydroxyalkanoates production by this organism was not dependent on nutritional limitation, but remarkably influenced by dissolved oxygen concentration in the culture medium. Low level of dissolved oxygen concentration prevented spore formation in the cells and stimulated the synthesis of polyhydroxyalkanoate. The composition of poly (3HB-co-3HV) produced by B. thuringiensis R-510 lyhydroxyalkanoate. The composition of poly(3HB-co-3HV) propduced by B. thuringiensis R-510 varied according to the growth time. However, there was no evidence that polymers isolated from cells were mixtures of immiscible polymers.

  • PDF

Modulated Fuel Feedback Control of a Fuel Injection SI Engine (연료량 변조법에 의한 연료분사식 가솔린엔진의 공연비 제어)

  • 박경석;박진일;고상근;노승탁;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.102-111
    • /
    • 1996
  • For the air-fuel ratio control in a fuel injection SI engine, the Jump-Ramp control algorithm has been widely adopted by using the on/off type oxygen sensor. But the Jump-Ramp control method has limitation on treating the frequency and amplitude of the air-fuel ratio oscillation. This study suggests another feedback control logic named modulated fuel feedback control, which has a concept of pre-tuned air-fuel ratio oscillation. In the modulation method, the oxygen sensor output is not treated as on/off signal but as analog signal for feedback. By using the modulation method, the frequency and the amplitude of air-fuel ratio oscillation can be adjustable to some extent for improving the conversion efficiency of the Three-Way Catalyst. The result shows that the performance of the modulation method is better than that Jump-Ramp control method in reducing the amplitude of the air-fuel ratio oscillation as well as in increasing the frequency of the air-fuel ratio oscillation.

  • PDF

Control of the Dissolved Oxygen Concentration in the Aeration Using Genetic Algorithms (유전 알고리즘을 이용한 폭기조내 용존산소농도 제어)

  • Kim, Chang-Hyun;Hur, Dong-Ryol;Kim, Sang-Hyo;Chung, Hyeng-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2479-2481
    • /
    • 2000
  • It is the time-varying dissolved oxygen(DO) dynamics that requires controlling for maintaining the DO concentration in the aeration tank. Many linear controllers have thus been applied. Because of the nonlinearity of the oxygen transfer function together with the time-varying respiration rate, however, the linear controllers are found to poorly perform in many cases. To overcome this limitation, a number of advanced controlling techniques have been developed and applied. In this study, designed GA-PI Controller using genetic algorithm(GA). Genetic algorithms(GAs) are search algorithms based on the mechanics of natural selection and natural genetics. As result of computer simulation, GA-PI controller shows the better control performance especially under the condition of the continuously changing DO set-point. This result represents that GA-PI controller can be a good measure to control the DO concentration in the SBR process which requires the sequential DO set-point change to accomplish the nitrification and denitrification in a single reactor.

  • PDF

Comparative randomized study of propofol target-controlled infusion versus sevoflurane anesthesia for third molar extraction

  • Chung, Patrick K;Dhanrajani, Parmanand
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.18 no.3
    • /
    • pp.169-175
    • /
    • 2018
  • Background: The objective of this study was to compare hemodynamic and recovery characteristics of total intravenous anesthesia using propofol target-controlled infusion (TCI) versus sevoflurane for extraction of four third molar teeth. Methods: One hundred patients undergoing extraction of four third molar teeth under general anesthesia were randomized to one of two groups. Group 1 received propofol TCI-oxygen for induction and propofol TCI-oxygen-air for maintenance. Group II received a propofol bolus of 2 mg/kg for induction and sevoflurane-oxygen-air for maintenance. Heart rate, mean arterial pressure (MAP), operating time, time to emergence, nausea and vomiting, and sedation and pain scores were measured in each group. Results: Demographic data, including age, gender, weight, and height, were not significantly different between the two groups. The MAP was significantly higher after intubation (P = 0.007) and injection of anesthesia (P = 0.004) in the propofol group than in the sevoflurane group, with significant reflex bradycardia (P = 0.028). The mean time to emergence from anesthesia using propofol was 25 s shorter than that of sevoflurane (P = 0.02). Postoperatively, the propofol group was less sedated than the sevoflurane group at 30 min (0.02 versus 0.12), but this difference was not significant (P = 0.065). Conclusion: Both propofol TCI and sevoflurane are good alternatives for induction and maintenance of anesthesia for short day-case surgery. However, propofol TCI does not blunt the hemodynamic response to sudden, severe stimuli as strongly as sevoflurane, and this limitation may be a cause for concern in patients with cardiac comorbidities.

Effect of Aeration Rates on Emissions of Oxygen and Sulfur compound gases during Composting of Dairy Manure (우분(牛糞) 퇴비화시(堆肥花時) 공기주입률(空氣注入率)이 산소 및 황화합물 가스 배출(排出)에 미치는 영향(影響))

  • Kang, Hang-Won;Zhang, Ruihong;Rhee, In-Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.472-481
    • /
    • 2000
  • This experiment used the enclosed bench-scale reactors was conducted to find out optimal aeration rate for reducing the emission of odors and producing the good-quality compost with the mixture of dairy manure and rice straw. The reactors with gas sampler were aerated at four different rates of 0.09, 0.18, 0.90 and $1.79l\;min^{-1}kg^{-1}$dry solids for 574 hours. The oxygen content within composting pile instantly decreased after aeration. Oxygen limitation(below 15%) in the treatments of $0.90l\;min^{-1}kg^{-1}$ and less was exponentially negative relationship with aeration rates and in the range of 35 to 300 hours after aeration. However, the treatment of $1.79l\;min^{-1}kg^{-1}$ didn't show the oxygen limitation. The oxygen consumption rate and the cumulative amount of oxygen consumed by different aeration rates was ranged in $0.80{\sim}1.57O_2g\;h^{-1}\;kg^{-1}VS^{-1}$, $460{\sim}900O_2g\;kg^{-1}VS^{-1}$, respectively, and they were high in the order of 0.90, 1.79, 0.18, $0.09l\;min^{-1}kg^{-1}$. The maximum oxygen consumption rate was estimated in the range of $1.2{\sim}1.3lmin^{-1}kg^{-1}$. The emission concentrations of sulfur compounds such as hydrogen sulfide, sulfur dioxide and methylmercaptan were remarkably high in the initial composting time. Then they were rapidly decreased with the passing of composting time and clearly with increasing aeration rates. Their average concentrations were in the range of 0.03~2.18, 0~0.50, $0.07{\sim}3.38mg\;kg^{-1}$, respectively and high in the order of methylmercaptan, hydrogen sulfide, and sulfur dioxide. Concentrations of sulfur compounds emitted from composting showed exponentially negative relationship at 1% statistically with the oxygen concentration. It was estimated that hydrogen sulfide and methylmercaptan suddenly increased in the level of 5% oxygen concentration and below, that they were little emitted in 15% and over but sulfur dioxide was emitted in the level of 20% oxygen.

  • PDF

Exopolysaccharide Production in Fed-batch and Continuous Culture by Methylomonas mucosa (Methylomonas mnosa에 의한 Exopolysaccharide의 유가식 및 연속 생산)

  • 장호남;권선훈심상준
    • KSBB Journal
    • /
    • v.8 no.2
    • /
    • pp.164-171
    • /
    • 1993
  • The production of extracellular polysaccharide by Methylomonas mucosa (NRRL B-5696) was investigated. The microorganism uses methanol as the carbon source for their growth and produces exopolysaccharides. The productivity of exopolysaccharides was investigated under various culture modes: batch, fed-batch and continuous culture. In flask culture the growth of cell mass and the production of polysaccharide were inhibited at above 1% (v/v) methanol. At 1%(v/v) methanol maximum specific growth rate was obtained. As C/N ratio (g methanol/g ammonium sulfate) increased, polysaccharide production increased and cells mass decreased. Magnesium ion was also found to be essential for the polysaccharide production. In batch culture the production of polysaccharides was more affected by the specific growth rate than the cell concentration. In fed-batch culture the concentration of polysaccharide was 4 times higher than that of batch culture, but the yield was lower. The productivity of fed-batch with continuous feeding was higher than that of batch or fed-batch with intermittent feeding. This is due to no methanol limitation or inhibition that used to occur in fed-batch culture with intermittent feeding. In continuous culture pure oxygen was supplied to avoid the oxygen limitation. As the dilution rate in- creased up to 0.21 h-1, the yield and productivity increased. The solution viscosity of the produced polysaccharide obtained from above increased exponentially with the concentration of polysaccharide.

  • PDF

A Modeling Approach: Effects of Wetland Plants on the Fate of Metal Species in the Sediments (퇴적물에서 금속 이온 거동에 미치는 습지 식물의 영향에 관한 모델 연구)

  • Choi, Jung Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.603-610
    • /
    • 2008
  • A mathematical model was developed to understand how the presence of plants affects vertical profiles of electron acceptors, their reduced species, and trace metals in the wetland sediments. The model accounted for biodegradation of organic matter utilizing sequential electron acceptors and subsequent chemical reactions using stoichiometric relationship. These biogeochemical reactions were affected by the combined effects of oxygen release and evapotranspiration driven by wetland plants. The measured data showed that $SO_4{^{2-}}$ concentrations increased at the beginning of the growing season and then gradually decreased. Based on the measured data, it was hypothesized that the limitation of the solid phase sulfide in direct contact with the roots may result in the gradual decrease of $SO_4{^{2-}}$ concentrations. With the dynamic formulation for the limitation of the solid phase sulfide, model simulated time variable sulfate profiles using published model parameters. Oxygen release from roots produced divalent metal species (i.e. $Cd^{2+}$) as well as oxidized sulfur species (i.e. $SO_4{^{2-}}$) in the sediment pore water. Evapotranspiration-induced advection increased flux of divalent metal species from the overlying water column into the rhizosphere. The increased divalent metal species were converted to the metal sulfide with sufficient FeS around the rhizosphere, which contributed to the decrease of bioavailability and toxicity of divalent metal activity in the pore water. Since the divalent metal activity is a good predictor of the metal bioavailability, this model with a proper simulation of solid phase sulfide plays an essential role to predict the dynamics of trace metals in the wetland sediments.