• Title/Summary/Keyword: oxygen free radicals

Search Result 332, Processing Time 0.028 seconds

An ESR Study of Amino Acid and Protein Free Radicals in Solution Part Ⅴ. an ESR Study of Gamma-Irradiated Lysozyme in Frozen Aqueous Solutions

  • Sun Joo Hong;L. H. Pitte
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.1
    • /
    • pp.40-45
    • /
    • 1972
  • An electron spin resonance study has been made on lysozyme in. frozen aqueous solutions irradiated with $_{60}Co$ r-rays in air at $77^{circ}K.$ Water resonances are dominant when the concentration and the temperature are both below 20% and $130^{circ}K$ respectively. More solute radicals are produced in the solution of higher concentration. Majority of the solute radicals results from direct hit of the radiation. The same types of radicals are induced at $77^{circ}K$ whether the substances are irradiated in the dry state or in frozen aqueous solution. Based on these results, it is assumed that the number of ESR centers produced by the secondary intermolecular radical reacions and stabilized in aqueous solutions may depend on the concentration of the solution, and the presence of water may facilitate the secondary radical reactions occuring in the solute molecules after heat treatment. Majority of the solute radicals above around $193^{circ}K$ are believed to react with oxygen to form peroxytype radicals. However, when the solution is subiected to heat-treatment at $265^{circ}K$ after irradiation at $195^{circ}K$ the peroxy-type resonance was not observed, suggestin that an appreciable amount of oxygen is condensed into the ice, at $77^{circ}K.$ in addition to the oxygen that has already been dissolved in solution and react with solute free radicals during the process of heat-treatment. When the solution contains $H_2O_2$, no water resonance but $HO_2$, type resonance was observed probably indicating that the radiation-induced OH radicals are trapped in $H_2O_2$ aggregates and react readily with $H_2O_2$ molecules to poroduce $HO_2$ type radicals even at $77^{circ}K.$.

  • PDF

Effects of Hyperbaric Oxygen Treatment on the Malondialdehyde Level and Activities of Catalase and Superoxide Dismutase in the Kidney of the Rats Exposed to Carbon Monoxide (일산화탄소 폭로후 고압산소 투여가 흰쥐 신장에서의 malondialdehyde 함량과 catalase 및 superoxide dismutase 활성에 미치는 영향)

  • 신인철;강주섭;고현철;하지희
    • Biomolecules & Therapeutics
    • /
    • v.7 no.2
    • /
    • pp.121-126
    • /
    • 1999
  • In an attempt to define the effects of hyperbaric oxygen treatment on the lipid peroxidation and oxygen free radical reactions in rats exposed to carbon monoxide, we studied malondialdehyde (MDA) level and activities of catalase and superoxide dismutase in the kidney of the rats exposed to carbon monoxide. Male Sprague-Dawley albino rats weighing 240 to 260 gm were used. Experimental groups consist of Control group (=breathing with air), HBO group (=exposed to hyperbaric oxygen 〔HBO, 3ATA, 100%〕 after air breath), CO group (=exposed to CO〔3,970 ppm〕after air breath), CO-Air group (=exposed to CO after air breath followed by air breath) and CO-HBO group (=exposed to CO after air breath followed HBO treatment). The CO group showed significantly higher MDA level, catalase activity and SOD activity as compared to that of control group. The CO-HBO group showed significantly lower MDA level as compared to that of CO group, and did not show significantly lower catalase activity and SOD activity as compared to that of CO group. These results suggest that the excessive oxygen free radicals is an important determinant in pathogenesis of CO-induced nephrotoxicity and HBO inhibits the lipid peroxidation caused by excessive oxygen free radicals in the kidney of the rats exposed to carbon monoxide.

  • PDF

Effect of Allopurinol on Vascular Endothelial Cells Damaged by Hydrogen Peroxide In Vitro (Hydrogen Proxide에 의해 손상된 배양 혈관내피세포에 대한 Allopurinol의 영향)

  • Suk, Seung-Han
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.980-984
    • /
    • 2006
  • In order to examine the effect of oxygen free radicals on the vascular endothelial cells, cell viability was measured by XTT assay after bovine pulmonary vascular endothelial cell line(BPVEC) was treated only with hydrogen peroxide. In addition, the antioxidant effect of allopurinol on cells treated with hydrogen peroxide was examined by colormetric assay. in this study, the BPVEC treated with hydrogen peroxide showed the significantly decreased cell viability compared with control. Whereas, the viability of cells treated with hydrogen peroxide and allopurinol has significantly increased when compared with that of cells treated only with hydrogen peroxide. These results suggested that hydrogen peroxide, one of the oxygen free radicals showed cytotoxic effect and allopurinol has protective effect on oxygen free radical-induced cytotoxicity.

Effects of Flavonoids of Ginseng Leaves on Erythrocyte Membranes against Single Oxygen Caused Damage

  • Park, Soo-Nam;Choi, Sang-Won;Boo, Yong-Chool;Kim, Chang-Kew;Lee, Tae-Young
    • Proceedings of the Ginseng society Conference
    • /
    • 1990.06a
    • /
    • pp.49-57
    • /
    • 1990
  • It has been well known that extended exposure to reactive oxygens causes severe damage to susceptible biomolecules. In this study, the effects of flavonoids including trifling and kaempferol from Ginseng leaves on single oxygen induced photohemolysis of erythrocytes and free radical scavenging activities were investigated . Each flavonoid aglycone (5-50UM) such as kaempferol, quercetin or baicalein exhibited a high protective effect against the photohemolysis. They protected the cells by scavenging 102 and free radicals. Although the free radical scavenging activities of the flavonoid glycosides were not much lower than those of their corresponding aglycones, their insolubility into lipid bilayers of membrane made them less effective in preventing the photohemolysis induced by 1O2. The 102 and free radical scavenging activities of flavonoids were estimated by the decomposition of the flavonoid by 1O2 and the bleaching of free radicals by the flavonoid, respectively. The solubilization of the flavonoid into micelle or erythrocytes was deduced from spectrophotometric and microscopic observations. The cooperation of L-ascorbic acid and a flavonoid, and a possible involvement of lipoxygenase or cyclooxygenase in the photohemolysis mechanism were discussed. Keywords Panax ginseng C.A Meyer, ginseng leaves, flavonoids, singe1 oxygen, Photohemolysis.

  • PDF

Antioxidatibe Mechanism of Total Saponin of Red Ginseng (홍삼 총 사포닌의 항산화작용 기전)

  • Kim, Jung-Sun;Nam, Kyu;Shim, Kyung-Hee;Kim, Kyu-Won;Im, Kwang-Sik;Chung, Hae-Young
    • Journal of Life Science
    • /
    • v.6 no.1
    • /
    • pp.48-55
    • /
    • 1996
  • Oxygen free radicals are highly reactive molecules with unpaired electrons, which are produced with in aerobic cells in the course of normal metabolic events. Normally, aerobic cells are protected from the damage of free radicals by antioxidative enzymes such as superoxide dismutase (SOD), catalase, glutathione (GSH) peroxidase, GSH S-transferase and GSH reductase which scabvenge free radicals as well as nonenzymatic antioxidants such as ceruloplasmin, albumin and nontioxidants in order to elucidate antioxidative mechanisms of red ginseng. The treatment with total saponin of red ginseng significantly devreased the contents of malondialdehyde and total free radicals in the liver. On the other hand, total saponin of red ginseng significantly increased the activities of SOD, catalase and GSH reductase and nonprotein-SH level. These results suggest that total saponin of red ginseng exerts an antioxidative effect by increasing endogenous antioxidants.

  • PDF

Protective Effects of a Ginseng Component, Malto1(2-Mlethyl-3-Hydrox)-4-Pyrone) against Tissue Damages Induced By Oxygen Radicals (활성산소에 의한 조직손상에 미치는 인삼성분의 보호효과)

  • Jae-Gook Shin;Jon
    • Journal of Ginseng Research
    • /
    • v.14 no.2
    • /
    • pp.187-190
    • /
    • 1990
  • Maltol(2-methyl-3-hydroxy-r-pyrone), a component known to be present in Korean Ginseng root showed an antioxidant action but its potency as an antioxidant was low: about 1150th that of other antioxidants such as pphenylenediamine, BHA and BHT. However, maltol was able to protect the oxidation damages in biological systems such as adriamycin-induced membrane damage in isolated cardiomyocytes, paraquat-induced toxicities in isolated hepatocytes and reperfusion injury in isolated hearts. The antioxidant action of maltol was also shown to be effective in vivo. The antioxidant action of this compound was probably due to the removal of hydroxyl radicals. In view of the roles of oxygen radical in various pathological proceises, Korean Ginseng root which contains several antioxidants including maltol is expected to have beneficial effects on the oxygen radical-involved processes.

  • PDF

The Role of Oxygen Free Radicals and Phospholipase $A_2$ in Ischemia-reperfusion Injury to the Liver

  • Park, Mee-Jung;Cho, Tai-Soon;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • v.18 no.3
    • /
    • pp.189-194
    • /
    • 1995
  • The focus of this study was to investigate the influences of enzymatic scavengers of active oxygen metabolites and phospholipase $A_2$ inhibitor on hepatic secretory and microsomal function during hepatic ischemia/reperfusion. Rats were pretreated with free radical scavengers such as superoxide dismutase (SOD), catalase, deferoxamine and phospholipase $A_2$ inhibitor such as quinacrine and then subjected to 60 min. no-flow hepatic ischemia in vivo. After 1, 5 hr of reperfusion, bile was collected, blood was obtained from the abdominal aorta, and liver microsomes were isolated. Serum aminotransferase (ALT) level was increased at 1 hr and peaked at 5 hr. The increase in ALT was significantly attenuated by SOD plus catalase, deferoxamine and quinacrine especially at 5 hr of reperfusion. The wet weight-to-dry weight ratio of the liver was significantly increased by ischemia/reperfusion. SOD and catalase treatment minimized the increase in this ratio. Hepatic lipid peroxidiltion was elevated by ischemia/reperfusion, and this elevation was inhibited by free radical scavengers and quina crine. Bile flow and cholate output, but not bilirubin output, were markedly decreased by ischemia/reperfusion and quinacrine restored the secretion. Cytochrome $P_{450}$ content was decreased by ischemia/reperfusion and restored by free radical scavengers and quinacrine to the level of that of the sham operated group. Aminopyrine N-demethylase activity was decreased and aniline p-hydroxylase was increased by ischemia/reperfusion. The changes in the activities of the two enzymes were prevented by free radical scavengers and quinacrine. Our findings suggest that ischemia/reperfusion diminishes hepatic secretory functions as well as microsomal drug metabolizing systems by increasing lipid peroxidation, and in addition to free radicals, other factors such as phospholipase $A_2$ are involved in pathogenes of hepatic dysfunction after ischemia/reperfusion.

  • PDF

Effects of Flavonoids of Ginseng Leaves on Erythrocyte Membranes against Singlet Oxygen Caused Damage (일중항 산소($^1$O$_2$)에 의한 적헐구막 손상에 미치는 인삼잎 플라보노이드의 영향)

  • Soo-Nam Park;San
    • Journal of Ginseng Research
    • /
    • v.14 no.2
    • /
    • pp.191-199
    • /
    • 1990
  • It has been well known that extended exposure to reactive oxygens causes severe damage to susceptible biomolecules. In this study, the effects of flavonoids including trifolin and kaempferol from Ginseng leaves on singlet oxygen induced photohemolysis of erythrocytes and free radical scavenging activities were investigated. Each flavonoid aglycone (5-50$\mu$M) such as kaempferol, quercetin or baicalein exhibited a high protective effect against the photohemolysis. They protected the cells by scavenging $^1O_2$ and free radicals Although the free radical scavenging activities of the flavonoid glycosides were not much lower than those of their corresponding aglycones, their insolubility into lipid bilayers of membrane made them less effective in preventing the photohemolysis induced by $^1O_2$. The $^1O_2$ and free radical scavenging activities of flavonoids were estimated by the decomposition of the flavonoid by $^1O_2$ and the bleaching of free radicals by the flavonoid, respectively. The solubilization of the flavonoid into micells or erythrocytes was deduced from spectrophotometric and microscopic observations. The cooperation of L-ascorbic acid and a flavonoid, and a possible involvement of lipoxygenase or cyclooxygenase in the photohemolysis mechanism were discussed.

  • PDF

Effects of Hwagi-Jogyeong-Tang (HJT) on Human HaCaT keratinocyte and malignant melanoma cells (화기조경탕(化氣調經湯)이 피부 세포 재생 및 악성 흑색종 세포에 미치는 영향)

  • Go, Hong-gae;Park, Su-yeon;Kim, Jong-han;Choi, Jeong-hwa
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.20 no.3
    • /
    • pp.14-28
    • /
    • 2007
  • Objective : Hwagi-Jokyeong-Tang (化氣調經湯, HJT) was described in DongeuiBogam(東醫寶鑑). This remedy has been used to treat patients with Naryeok, which is similar as tuberculous cervical lymphadenitis in western medicine. Methods : In this study, the present author investigated the effects of HJT on on Human HaCaT keratinocyte and malignant melanoma cells such as SK-MEL-2 and B16F10 in terms of cell viabilities, proliferations, DPPH free radical scavenging activities, oxygen free radical productions and inhibitory action on elastase activities. Results : HJT acceleated proliferation of HaCaT keratinocytes dose-dependantly. HJT also prevented cell death of HaCaT induced by Hydrogen peroxide, which products oxygen free radicals. On the contrary, HJT did not affect proliferations of SK-MEL-2 or B16F10. In addition, HJT was shown to have DPPH free radical scavenging activities and also have inhibitory effects on elastase activities too. On the fluorescent examinations, the present author know that HJT did not affect production levels of oxygen free radicals in malignant melanoma cell, SK-MEL-2. Conclusions : These results suggest that HJT has possibilities of usage for functional cosmetics which have skin regeneration or prevention from skin tissue injury.

  • PDF

Role of Oxygen Free Radical in the Expression of Interleukin-8 and Interleukin-$1{\beta}$ Gene in Mononuclear Phagocytic Cells (내독소에 의한 말초혈액 단핵구의 IL-8 및 IL-$1{\beta}$ 유전자 발현에서 산소기 역할에 관한 연구)

  • Kang, Min-Jong;Kim, Jae-Yeol;Park, Jae-Seok;Lee, Seung-Joon;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.6
    • /
    • pp.862-870
    • /
    • 1995
  • Background: Oxygen free radicals have generally been considered as cytotoxic agents. On the other hand, recent results suggest that small nontoxic amounts of these radicals may act a role in intracellular signal transduction pathway and many efforts to reveal the role of these radicals as secondary messengers have been made. It is evident that the oxygen radicals are released by various cell types in response to extracellular stimuli including LPS, TNF, IL-1 and phorbol esters, all of which translocate the transcription factor $NF{\kappa}B$ from cytoplasm to nucleus by releasing an inhibitory protein subunit, $I{\kappa}B$. Activation of $NF{\kappa}B$ is mimicked by exposure to mild oxidant stress, and inhibited by agents that remove oxygen radicals. It means the cytoplasmic form of the inducible tanscription factor $NF{\kappa}B$ might provide a physiologically important target for oxygen radicals. At the same time, it is well known that LPS induces the release of oxygen radicals in neutrophil with the activation of $NF{\kappa}B$. From above facts, we can assume the expression of IL-8 and IL-$1{\beta}$ gene by LPS stimulation may occur through the activation of $NF{\kappa}B$, which is mediated through the release of $I{\kappa}B$ by increasing amounts of oxygen radicals. But definitive evidence is lacking about the role of oxygen free radicals in the expression of IL-8 and IL-$1{\beta}$ gene in mononuclear phagocytic cells. We conducted a study to determine whether oxygen radicals act a role in the expression of IL-8 and IL-$1{\beta}$ gene in mononuclear phagocytic cells. Method: Human peripheral blood monocytes were isolated from healthy volunteers. Time and dose relationship of $H_2O_2$-induced IL-8 and IL-$1{\beta}$ mRNA expression was observed by Northern blot analysis. To evaluate the role of oxygen radicals in the expression of IL-8 and IL-$1{\beta}$ mRNA by LPS stimulation, pretreatment of various antioxiants including PDTC, TMTU, NAC, ME, Desferrioxamine were done and Northern blot analysis for IL-8 and IL-$1{\beta}$ mRNA was performed. Results: In PBMC, dose and time dependent expression of IL-8 and IL-$1{\beta}$ mRNA by exogenous $H_2O_2$ was not observed. But various antioxidants suppressed the expression of LPS-induced IL-8 and IL-$1{\beta}$ mRNA expression of PBMC and the suppressive activity was most prominant when the pretreatment was done with TMTU. Conclusion: Oxygen free radical may have some role in the expression of IL-8 and IL-$1{\beta}$ mRNA of PBMC but that radical might not be $H_2O_2$.

  • PDF