• 제목/요약/키워드: oxygen free radical metabolism.

검색결과 22건 처리시간 0.031초

노화에 미치는 산소 유리라디칼에 관한 연구동향 (The involvement of oxygen free radicals in the onset of aging)

  • 김정상;나창수;김영곤
    • 한국한의학연구원논문집
    • /
    • 제3권1호
    • /
    • pp.229-239
    • /
    • 1997
  • The superoxide anion radical$(O_2)$ poses a threat to macromocules and cell organelles of the living cells. This toxicity damage to all groups of proteins results in loss of enzyme function concerned with metabolism and ion transport, and peroxidation of unsaturated fatty acids and cholesterol results in a change of permeability characteristics of the membrane, and oxidative of nucleic acids results in genomic damage and thereby cause mutation, potential carcinogenesis and somatic damage that produce cellular aging Superoxide dismutase(SOD) has received substantial attention as a potential therapeutic agent. It has been investigated as a possible agent for the prevention of ontogenesis, the reduction of cytotoxic effect of anticancer drugs, and protection against damage in ischemic tissue. It is suggest that $O_2$ is concerned with cellular aging, thereafter we need to investigate herb that activated to SOD.

  • PDF

Establishment of New Method for the Assay of Glutamate-cysteine Ligase Activity in Crude Liver Extracts

  • Kwon Young-Hye;Stipanuk Martha H.
    • Toxicological Research
    • /
    • 제22권1호
    • /
    • pp.39-45
    • /
    • 2006
  • As the antioxidant and free radical scavenger, glutathione (GSH) participates in the preservation of cellular redox status and defense against reactive oxygen species and xenobiotics. Glutamate-cysteine ligase (GCL; also known as ${\gamma}$-glutamylcysteine synthetase, EC 6.3.2.2) is the rate limiting enzyme in GSH synthesis. In the present study, the accurate method for determination of GCL activity in crude liver extracts was developed by measuring both ${\gamma}$-glutamylcysteine and GSH from cysteine in the presence of glutamate, glycine and an ATP-generating system. We added glycine to promote the conversion of ${\gamma}$-glutamylcysteine to GSH, and to minimize the possibility of ${\gamma}$-glutamylcysteine metabolism to cysteine and oxoproline by ${\gamma}$-glutamylcyclotransferase. We established optimal conditions and substrate concentrations for the enzyme assay, and verified that inhibition of GCL by GSH did not interfere with this assay. Therefore, this assay of hepatic GCL under optimal conditions could provide a more accurate measurement of this enzyme activity in the crude liver extracts.

Effect of Cyclohexane and Xylene Mixture Treatment on the Liver Damage in Rats

  • Shin, Joong-Kyu
    • 대한의생명과학회지
    • /
    • 제9권2호
    • /
    • pp.93-98
    • /
    • 2003
  • To investigate the cyclohexane and xylene mixture treatment on the liver damage, the rats were treated by the mixture of cyclohexane and xylene (CH+X) and then, liver damage was demonstrated by liver function findings based on liver weight/body weight, serum level of alanine aminotransferase (ALT), xanthine oxidase (XO) and then compared with cyclohexane treated group (CH group) and xylene-treated group (X). The CH+X group showed merely severer liver damge than CH or X group. On the other hand, CH+X group showed lower activity of hepatic cytochrome P-450 dependent aniline hydroxylase (CYPdAH) than CH or X group, but no statical differences were demonstrated among three experimental groups. Especially the hepatic GSH content was merely declined than CH or X group and the activity of hepatic GST was higher in CH+X group than CH or X group. In conclusion, cyclohexane and xylene mixture treated animals showed merely severer liver damage than cyclohexane or xylene treated group and such a fact may be caused by inhibition of cyclohexane or xylene metabolism and oxygen free radical.

  • PDF

Evaluation of Genotoxicity of Three Antimalarial Drugs Amodiaquine, Mefloquine and Halofantrine in Rat Liver Cells

  • Farombi E. Olatunde
    • 한국환경성돌연변이발암원학회지
    • /
    • 제25권3호
    • /
    • pp.97-103
    • /
    • 2005
  • The genotoxic effect of antimalarial drugs amodiaquine (AQ), mefloquine (MQ) and halofantrine (HF) was investigated in.at liver cells using the alkaline comet assay. AQ, MQ and HF at concentrations between $0-1000{\mu}mol/L$ significantly increased DNA strand breaks of rat liver cells dose-dependently. The order of induction of strand breaks was AQ>MQ>HF. The rat liver cells exposed to AQ and HF (200 and 400 ${\mu}mol/L$) and treated with (Fpg) the bacterial DNA repair enzyme that recognizes oxidized purine showed greater DNA damage than those not treated with the enzyme, providing evidence that AQ and HF induced oxidation of purines. Such an effect was not observed when MQ was treated with the enzyme. Treatment of cells with catalase, an enzyme inactivating hydrogen peroxide, decreased significantly the extent of DNA damage induced by AQ, and HF but not the one induced by MQ. Similarly quercetin, an antioxidant flavonoid at $50{\mu}mol/L$ attenuated the extent of the formation of DNA strand breaks by both AQ and HE. Quercetin, however, did not modify the effects of MQ. These results indicate the genotoxicity of AQ, MQ and HF in rat liver cells. In addition, the results suggest that reactive oxygen species may be involved in the formation of DNA lesions induced by AQ and HF and that, free radical scavengers may elicit protective effects against genotoxicity of these antimalarial drugs.

  • PDF

백서 태자의 배양 피부세포에서 Adriamycin의 세포독성에 관한 연구 (Cytotoxic Effect of Adriamycin in Cultured Skin Cells of Fetal Rat)

  • 이경훈;이상열;김진환;김용식;김명석
    • 대한약리학회지
    • /
    • 제27권2호
    • /
    • pp.197-205
    • /
    • 1991
  • Adriamycin (Doxorubicin HCl)의 혈관밖 유출에 따른 조직의 손상, 특히 피부괴양 및 괴사 기전을 규명하기 위한 연구의 일환으로 흰쥐 피부세포를 이용한 in vitro 실험에서 adriamycin에 의한 산소라디칼 생성 및 그와 관련된 세포독성 기전으로 지질과산화를 검토하였다. Adriamycin은 흰쥐 태자 피부의 배양세포에서 lactic dehydrogenase(LDH) 유리를 용량 및 시간 의존적으로 증가 시켰으며, NADPH 및 NADH 첨가 조건에서 $superoxide\;anion(O^-\;_2{\cdot})$ 생성을 현저히 증가시켰다. Adriamycin은 지질과산화 반응의 척도인 malondialdehyde(MDA) 생성을 역시 NADPH, NADH 존재하에서 용량의존적으로 증가시켰고, 산소라디칼 제거물질들인 superoxide dismutase (SOD), catalase 및 thiourea와 항산화물질인 butylated hydroxytoluene(BHT), ${\alpha}-tocopherol$은 MDA 생성증가를 현저히 억제하였다. 1, 3,-bis(2-chloroethyl)-1-nitrosourea(BCNU)를 처리하여 산화성 공격에 대한 방어기전의 하나인 glutahione 체계를 억제할 경우 adriamycin에 의한 MDA 생성은 더욱 현저히 증가하였고, 이는 역시 항산화 물질들에 의하여 억제되었다. 이상의 연구성적에서 adriamycin은 산소라디칼 생성의 증가와 그에 따른 지질과산화를 촉진하므로서 피부세포에 손상을 줄 것으로 사료되었다.

  • PDF

영양소의 변천과 식물육종의 추이 (Changes in the Concept of Nutrients and Transition of Plant Breeding)

  • 한창열
    • Journal of Plant Biotechnology
    • /
    • 제30권4호
    • /
    • pp.387-397
    • /
    • 2003
  • During the first half of twentieth century, even though the importance of non-calorie essential micronutrients of 13 vitamins and 17 minerals has been known to alleviate nutritional disorder; the primary objective of agriculture and plant breeding programs has been to increase the productivity and seed yields, and macronutrients of proteins, fats, and carbohydrates made up the bulk of foodstuff which were used primarily as an energy source. In the last decade it has been found that non-essential micronutrients encompass a vast group of phytochemicals including antioxidants that are not strictly required in the diet but when present at sufficient levels work as health-promoting chemicals. Nowadays agricultural crops are grown for health rather than for food or fiber, and modifying the nutritional compositions of plant foods has become an urgent health issue. To ensure an adequate intake of essential vitamins and minerals, and to increase the consumption of health-promoting phytochemicals, the researches on plant secondary metabolism have been made. The attempt to improve nutritional quality of crops has been blocked by a lack of basic knowledge of plant metabolism. The advent of genomics era enabled new approaches to make crossing regardless of species, family, or phylum barriers, and the accumulation in our basic knowledge on plant secondary metabolism during the coming decade would be tremendous. As the major staple crops contain insufficient amount of many micronutrients, fortification strategy will be a necessary practice. Elevated intake of specific vitamins, C, E, and $\beta$-carotene, mineral selenium, antioxidants, and phytochemicals significantly reduces the risk of chronic disease such as cancer, cardiovascular disorder, diabetis, and other degenerative disease associated with aging. As the attempt to improve the nutritional quality of crops requires the basic knowledges on plant metabolism, plant biochemistry, human physiology, and food chemistry, strong interdisplinary collaboration among plant biotechnologists, human nutritionists, and food scientists will be needed. Inhibition of cancer, cardiovascular disease, and other degenerative disorder may be the biggest goal facing nutritional plant breeders. But the assumption that simply increasing dietary level of any compound will necessarily improve human health is a dangerous idea because many plant secondary products and dietary contaminants have paradoxical (hermetic) effects. Before biotechnical manipulation is undertaken to elevate or reduce any individual constituent of crops, the contribution of the micronutrient to human health must first be investigated.

홍삼 에탄올 추출물의 생리활성과 세포증식 효과 (Biological Activities and Cell Proliferation effects of Red Ginseng Ethanol Extracts)

  • 황성연;안성훈
    • 대한약침학회지
    • /
    • 제14권3호
    • /
    • pp.55-61
    • /
    • 2011
  • Objectives: Reactive Oxygen Species(ROS) are continuously produced at a high rate as a by-product of aerobic metabolism. Since tissue damage by free radical, ROS such as hydrogen peroxide($H_2O_2$), nitric oxide(NO) increases with age. Several lines of evidence provided that ROS appears to cause to develop aging-related various diseases such as cancer, arthritis, cardiovascular disease. In this study, we have conducted to investigate the pharmacological effects of red ginseng for the development possibility to pharmacopuncture drug sources or healthy aid foods. Methods: For our aims, it was investigated the biological activities of Red Ginseng ethanol extracts (RGEE) by measuring total polyphenol contents, total flavonoid contents, DPPH radical scavenging activity, ABTS radical scavenging activity and cell viability of MCF 10A and SK-MEL-2 in vitro with MTT assay method. Results: The total polyphenol contents of RGEE was 3.06${\pm}$0.11mg/g in 10mg/ml, the total flavonoid contents of RGEE was 1.35${\pm}$0.01mg/g in same concentration. The ABTS radical scavenging activity was about 80% and that of DPPH activity was 65% in 50mg/ml of RGEE. The cell viability of SKMEL-2, skin cancer cell line was decreased and that of MCF 10A, skin normal cell line was increased. Conclusions: We conclude that RGEE may be useful as potential functional foods or pharmacopuncture drug sources on the diseases induced by oxidant stress.

식이성 홍국이 Bromobenzene에 의한 간 손상의 해독에 미치는 영향 (Effect of Dietary Monascus Koji on the Liver Damage Induced by Bromobenzene in Rats)

  • 오정대;윤종국;유대식
    • 한국식품영양과학회지
    • /
    • 제33권6호
    • /
    • pp.965-972
    • /
    • 2004
  • 홍국이 bromobenzene에 의한 간 손상에 어떠한 영향을 미치는지를 알아보기 위하여 흰쥐 에 2% 및 4% 홍국 첨가식이로 1개월 간 성장시킨 다음 체중 1 kg당 400 mg의 bromobenzene을 1일 1회 복강으로 3회 투여한 다음, 24시간 후에 처치하여 다음과 같은 결과를 얻었다. 2% 및 4% 홍국 첨가식이로 성장시킨 흰쥐에 있어서 체중증가율은 표준식이군과 별다른 차이를 볼 수 없었으며 간 기능 및 병리조직검사에서도 홍국 섭취로 인한 간 조직의 병태생리적 변화가 관찰되지 않았다. 이러한 실험동물에 bromobenzene을 투여 시 간 손상 정도가 2% 홍국 첨가식이군에서 가장 경미하게 나타났다. 2% 홍국 첨가식이군에서 bromobenzene에 의한 간손상이 경미하게 나타난 원인을 구명하고자 간 손상 실험모델에bromobenaene을 재투여시, 간 조직 중 cytochrome P-450 dependant aniline hydroxylase 활성은 대조군에 비하여 2% 홍국 첨가식이군에서는 유의한 증가(p<0.01)를 보였으나 표준식이군 및 4% 홍국 첨가식이군은 오히려 감소하였다. 그리고 대조군에 대한 간 조직 glutathione 함량 감소율에 있어서는 2% 홍국 첨가식이군에서 표준식이군 및 4% 홍국 첨가식이군보다 높게 나타났다. 그러나 간 조직의 glutathione S-transferase 활성은 3군간에 별다른 차이를 볼 수 없었으나 반응속도적 측면에서는 2% 홍국 첨가식이군에서 표준식이군 및 4% 홍국 첨가식이군보다 V$_{max}$치가 높게 나타났다. 한편 bromobenzene 투여에 의한 간 조직의 cytochrome P-450 dependant aniline hydroxylase 증가율은 2% 홍국 첨가식이군에서 표준식이군 및 4% 홍국 첨가식이군보다 낮게 나타났으며, xanthine oxidase 활성은 3군간에 별다른 차이를 볼 수 없었다. 특히 대조군 및 bromobenzene 투여군 모두superoxidase dismutase, catalase, glutathione peroxidase 활성은 2% 홍국 첨가식이군에서 표준식이군 및 4% 홍국 첨가식이군보다 높게 나타났다. 이상 실험결과를 종합해 볼 때, 2% 홍국 첨가식이군에서 bromobenzene에 의한 간 손상이 경미하게 나타났으며, 이는 2% 흥국 첨가식이의 섭취로 인한 bromobenzene 대사 및 유해산소 해독의 촉진에 기인되기 때문일 것으로 생각된다.다.

Transition Metal Induces Apoptosis in MC3T3E1 Osteoblast: Evidence of Free Radical Release

  • Chae, Han-Jung;Chae, Soo-Wan;Kang, Jang-Sook;Yun, Dong-Hyeon;Bang, Byung-Gwan;Kang, Mi-Ra;Kim, Hyung-Min;Kim, Hyung-Ryong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권1호
    • /
    • pp.47-54
    • /
    • 2000
  • Transition metal ions including $Se^{2+},\;Cd^{2+},\;Hg^{2+}\;or\;Mn^{2+}$ have been thought to disturb the bone metabolism directly. However, the mechanism for the bone lesion is unknown. In this study, we demonstrated that MC3T3E1 osteoblasts, exposed to various transition metal ions; selenium, cadmium, mercury or manganese, generated massive amounts of reactive oxygen species (ROS). The released ROS were completely quenched by free radical scavengers-N-acetyl cysteine (NAC), reduced glutathione (GSH), or superoxide dismutase (SOD). First, we have observed that selenium $(10\;{\mu}M),$ cadmium $(100\;{\mu}M),$ mercury $(100\;{\mu}M)$ or manganese (1 mM) treatment induced apoptotic phenomena like DNA fragmentation, chromatin condensation and caspase-3-like cysteine protease activation in MC3T3E1 osteoblasts. Concomitant treatment of antioxidant; N-acetyl-L-cysteine (NAC), reduced-form glutathione (GSH), or superoxide dismutase (SOD), prevented apoptosis induced by each of the transition metal ions. Catalase or dimethylsulfoxide (DMSO) has less potent inhibitory effect on the apoptosis, compared with NAC, GSH or SOD. In line with the results, nitroblue tetrazolium (NBT) stain shows that each of the transition metals is a potent source of free radicals in MC3T3E1 osteoblast. Our data show that oxidative damage is associated with the induction of apoptosis in MC3T3E1 osteoblasts following $Se^{2+},\;Cd^{2+},\;Hg^{2+}\;or\;Mn^{2+}$ treatment.

  • PDF

Proteomic Changes in Chick Brain Proteome Post Treatment with Lathyrus Sativus Neurotoxin, β-N-Oxalyl-L-α,β-Diaminopropionic Acid (L-ODAP): A Better Insight to Transient Neurolathyrism

  • Anil Kumar, D;Natarajan, Sumathi;Omar, Nabil A M Bin;Singh, Preeti;Bhimani, Rohan;Singh, Surya Satyanarayana
    • Toxicological Research
    • /
    • 제34권3호
    • /
    • pp.267-279
    • /
    • 2018
  • Neurolathyrism is a neurodegenerative disorder characterized by spastic paraplegia resulting from the excessive consumption of Lathyrus sativus (Grass pea). ${\beta}$-N-Oxalyl-L-${\alpha},{\beta}$-diaminopropionic acid (L-ODAP) is the primary neurotoxic component in this pea. The present study attempted to evaluate the proteome-wide alterations in chick brain 2 hr and 4 hr post L-ODAP treatment. Proteomic analysis of chick brain homogenates revealed several proteins involved in cytoskeletal structure, signaling, cellular metabolism, free radical scavenging, oxidative stress and neurodegenerative disorders were initially up-regulated at 2 hr and later recovered to normal levels by 4 hr. Since L-ODAP mediated neurotoxicity is mainly by excitotoxicity and oxidative stress related dysfunctions, this study further evaluated the role of L-ODAP in apoptosis in vitro using human neuroblastoma cell line, IMR-32. The in vitro studies carried out at $200{\mu}M$ L-ODAP for 4 hr indicate minimal intracellular ROS generation and alteration of mitochondrial membrane potential though not leading to apoptotic cell death. L-ODAP at low concentrations can be explored as a stimulator of various reactive oxygen species (ROS) mediated cell signaling pathways not detrimental to cells. Insights from our study may provide a platform to explore the beneficial side of L-ODAP at lower concentrations. This study is of significance especially in view of the Government of India lifting the ban on cultivation of low toxin Lathyrus varieties and consumption of this lentil.