• 제목/요약/키워드: oxygen evolution

검색결과 261건 처리시간 0.022초

Review on sodium corrosion evolution of nuclear-grade 316 stainless steel for sodium-cooled fast reactor applications

  • Dai, Yaonan;Zheng, Xiaotao;Ding, Peishan
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3474-3490
    • /
    • 2021
  • Sodium-cooled fast reactor (SFR) is the preferred technology of the generation-IV fast neutron reactor, and its core body mainly uses nuclear-grade 316 stainless steel. In order to prolong the design life of SFRs to 60 years and more, it is necessary to summarize and analyze the anti-corrosion effect of nuclear grade 316 stainless steel in high temperature sodium environment. The research on sodium corrosion of nuclear grade 316 stainless steel is mainly composed of several important factors, including the microstructure of stainless steel (ferrite layer, degradation layer, etc.), the trace chemical elements of stainless steel (Cr, Ni and Mo, etc) and liquid impurity elements in sodium (O, C and N, etc), carburization and mechanical properties of stainless steel, etc. Through summarizing and constructing the sodium corrosion rate equations of nuclear grade 316 stainless steel, the stainless steel loss of thickness can be predicted. By analyzing the effects of temperature, oxygen content in sodium and velocity of sodium on corrosion rate, the basis for establishing integrity evaluation standard of SFR core components with sodium corrosion is provided.

온도조건에 따른 아연-공기 전지의 전기화학적 특성 (Effect of Temperature Conditions on Electrochemical Properties for Zinc-Air Batteries)

  • 이주광;조용남
    • 한국재료학회지
    • /
    • 제30권12호
    • /
    • pp.687-692
    • /
    • 2020
  • A zinc-air battery consists of a zinc anode, an air cathode, an electrolyte, and a separator. The active material of the positive electrode is oxygen contained in the ambient air. Therefore, zinc-air batteries have an open cell configuration. The external condition is one of the main factors for zinc-air batteries. One of the most important external conditions is temperature. To confirm the effect of temperature on the electrochemical properties of zinc-air batteries, we perform various analyses under different temperatures. Under 60 ℃ condition, the zinc-air cell shows an 84.98 % self-discharge rate. In addition, high corrosion rate and electrolyte evaporation rate are achieved at 60 ℃. Among the cells stored at various temperature conditions, the cell stored at 50 ℃ delivers the highest discharge capacity; it also shows the highest self-discharge rate (65.33 %). On the other hand, the cell stored at 30 ℃ shows only 2.28 % self-discharge rate.

해수 환경에서 슈퍼 오스테나이트 스테인리스강의 전기화학적 거동에 미치는 캐비테이션 진폭의 영향 (Effect of Cavitation Amplitude on the Electrochemical Behavior of Super Austenitic Stainless Steels in Seawater Environment)

  • 허호성;김성종
    • Corrosion Science and Technology
    • /
    • 제21권2호
    • /
    • pp.138-146
    • /
    • 2022
  • The cavitation and potentiodynamic polarization experiments were conducted simultaneously to investigate the effect of cavitation amplitude on the super austenitic stainless steel (UNS N08367) electrochemical behavior in seawater. The results of the potentiodynamic polarization experiment under cavitation condition showed that the corrosion current density increased with cavitation amplitude increase. Above oxygen evolution potential, the current density in a static condition was the largest because the anodic dissolution reaction by intergranular corrosion was promoted. In the static condition, intergranular corrosion was mainly observed. However, damage caused by erosion was observed in the cavitation environment. The micro-jet generated by cavity collapse destroyed the corrosion product and promoted the repassivation. So, weight loss occurred the most in static conditions. After the experiment, wave patterns were formed on the surface due to the compressive residual stress caused by the impact pressure of the cavity. Surface hardness was improved by the water cavitation peening effect, and the hardness value was the highest at 30 ㎛ amplitude. UNS N08367 with excellent mechanical performance due to its high hardness showed that cavitation inhibited corrosion damage.

Hypothetical protein predicted to be tumor suppressor: a protein functional analysis

  • Kader, Md. Abdul;Ahammed, Akash;Khan, Md. Sharif;Ashik, Sheikh Abdullah Al;Islam, Md. Shariful;Hossain, Mohammad Uzzal
    • Genomics & Informatics
    • /
    • 제20권1호
    • /
    • pp.6.1-6.15
    • /
    • 2022
  • Litorilituus sediminis is a Gram-negative, aerobic, novel bacterium under the family of Colwelliaceae, has a stunning hypothetical protein containing domain called von Hippel-Lindau that has significant tumor suppressor activity. Therefore, this study was designed to elucidate the structure and function of the biologically important hypothetical protein EMK97_00595 (QBG34344.1) using several bioinformatics tools. The functional annotation exposed that the hypothetical protein is an extracellular secretory soluble signal peptide and contains the von Hippel-Lindau (VHL; VHL beta) domain that has a significant role in tumor suppression. This domain is conserved throughout evolution, as its homologs are available in various types of the organism like mammals, insects, and nematode. The gene product of VHL has a critical regulatory activity in the ubiquitous oxygen-sensing pathway. This domain has a significant role in inhibiting cell proliferation, angiogenesis progression, kidney cancer, breast cancer, and colon cancer. At last, the current study depicts that the annotated hypothetical protein is linked with tumor suppressor activity which might be of great interest to future research in the higher organism.

Comparative Study of Undoped and Nickel-Doped Molybdenum Oxide Photoanodes for PEC Water Splitting

  • Garcia-Garcia, Matias
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권3호
    • /
    • pp.377-389
    • /
    • 2022
  • The current global energy supply depends heavily on fossil fuels. This makes technology such as direct water splitting from harvesting solar energy in photoelectrochemical (PEC) systems potentially attractive due to its a promising route for environmentally benign hydrogen production. In this study, undoped and nickel-doped molybdenum oxide photoanodes (called photoanodes S1 and S2 respectively) were synthesized through electrodeposition by applying -1.377 V vs Ag/AgCl (3 M KCl) for 3 hours on an FTO-coated glass substrate immersed in molibdatecitrate aqueous solutions at pH 9. Scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) were used for microstructural and compositional characterizations of the photoanodes. In addition, the optical and photoelectrochemical characterizations of these photoanodes were performed by UV-Visible spectroscopy, and linear scanning voltammetry (LSV) respectively. The results showed that all the photoanodes produced exhibit conductivity and catalytic properties that make them attractive for water splitting application in a photoelectrochemical cell. In this context, the photoanode S2 exhibited better photocatalytic activity than the photoanode S1. In addition, photoanode S2 had the lowest optical band-gap energy value (2.58 eV), which would allow better utilization of the solar spectrum.

Long Length YBCO Coated Conductors Prepared by an MOD Process on Buffered Metallic Tapes

  • Chung, Kook-Chae;Yoo, Jai-Moo;Ko, Jae-Woong;Kim, Young-Kuk;Kim, Tae-Hyung;Ko, Rock-Kil
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권4호
    • /
    • pp.12-14
    • /
    • 2006
  • YBCO coated conductors have been fabricated by the reel-to-reel processing using TFA-MOD method. In this work, the fluorine-free Y & Cu precursor solution was synthesized to shorten the calcining time by reducing the evolution of HF gas, thus the meter-long YBCO precursor films can be made within few hours by the continuous slot-die coating & calcination step using the F-free Y & Cu precursor solution. The annealing step was followed to make the YBCO films by the reel-to-reel method with the vertical gas flow system onto the moving tape. To increase the growth rate of the YBCO films by enhancing the removal of HF gas, the low total pressure was adopted in the annealing processing. And the water partial pressure and the oxygen partial pressure were varied to optimize the growth conditions of the MOD-YBCO films on the buffered metal tape. FE-SEM and XRD were used to investigate the surface morphologies and the texture of the meter-long YBCO films. The end-to-end critical current $(I_c)$ of 63A/cm-width and the critical current density $(J_c)$of $0.9MA/cm^2$ with the thickness of $0.7{\mu}m$ were obtained in the 0.42m long coated conductor.

Impact of PSI-KIT Nitriding model on hypothetical Spent Fuel Pool accident simulation

  • Mateusz Malicki;Terttaliisa Lind
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2504-2515
    • /
    • 2023
  • In past years the Paul Scherrer Institute (PSI, Switzerland) and the Karlsruhe Institue of Technology (KIT, Germany)) collaborated to develop a model to account for the active role of nitrogen in the air oxidation of a Zircalloy cladding. The "PSI-KIT Nitriding Model for Zirconium based Fuel Cladding" model was implemented at PSI into PSI-MELCOR 1.8.6. In order to make a preliminary evaluation of the effect of the new model on the evolution of full-scale spent fuel pool accidents, one spent fuel pool event was analyzed using the PSI research version of PSI-MELCOR 1.8.6, which includes the nitriding model. To adapt an existing input deck for the calculations, a sensitivity study was conducted to find an optimal nodalization for the analyses. The nitriding model results were compared to those calculated with the MELCOR 1.8.6-PSI without the new nitriding model. The results demonstrate the effect of the nitriding reactions in spent fuel pool accident progression. Moreover, they confirm the impact of ZrN formation during cladding oxidation in air when the oxidation reactions lead to oxygen starvation inside the fuel assemblies. The nitriding reaction led to higher chemical heat generation during the accident and to an earlier failure of the cladding than when the effect of nitrogen reactions was not considered. It should be noted that the nitriding model, as implemented in the PSI version of MELCOR 1.8.6 has not yet been conclusively validated. Thereby the results presented in this paper should be treated as a preliminary demonstration of the capabilities of the model.

High-valence Mo doping for promoted water splitting of Ni layered double hydroxide microcrystals

  • Kyoungwon Cho;Seungwon Jeong;Je Hong Park;Si Beom Yu;Byeong Jun Kim;Jeong Ho Ryu
    • 한국결정성장학회지
    • /
    • 제33권2호
    • /
    • pp.78-82
    • /
    • 2023
  • The oxygen evolution reaction (OER) is the primary challenge in renewable energy storage technologies, specifically electrochemical water splitting for hydrogen generation. We report effects of Mo doping into Ni layered double hydroxide (Ni-LDH) microcrystal on electrocatalytic activities. In this study, Mo doped Ni-LDH were grown on three-dimensional porous nicekl foam (NF) by a facile solvothermal method. Homogeneous LDH structure on the NF was clearly observed. However, the surface microstructure of the nickel foam began to be irregular and collapsed when Mo precursor is doped. Electrocatalytic OER properties were analyzed by Linear sweep voltammetry (LSV) and Electrochemical impedance spectroscopy (EIS). The amount of Mo doping used in the electrocatalytic reaction was found to play a crucial role in improving catalytic activity. The optimum Mo amount introduced into the Ni LDH was discussed with respect to their OER performance.

Effect of Seawater Concentration on Electrochemical Corrosion of Duplex Stainless Steel

  • Ho-Seong Heo;Hyun-Kyu Hwang;Dong-Ho Shin;Seong-Jong Kim
    • Corrosion Science and Technology
    • /
    • 제23권4호
    • /
    • pp.255-265
    • /
    • 2024
  • Duplex stainless steels (UNS S32205, UNS S32750) are used in various environments. The potentiodynamic polarization tests were conducted at 30 ℃ in order to study the electrochemical corrosion behaviors of duplex stainless steels under different seawater concentrations (fresh water, seawater, mixed water). The results of Tafel analysis in seawater showed that UNS S32205 and UNS S32750 had the highest corrosion current densities at 6.12 × 10-4 mA/cm2 and 5.41 × 10-4 mA/cm2, respectively. The pitting potentials of UNS S32205 and UNS S32750 were comparable to or higher than the oxygen evolution potential in fresh water, mixed water, and seawater. The maximum damage depths and surface damage ratio caused by pitting corrosion increased with chloride concentration. The synergy effect of molybdenum and nitrogen enhances the concentration of Mo, Ni, and Cr at the interface of the metal-electrolyte. In particular, in the case of nitrogen, NH3 and NH4+ are formed to compensate for the pH drop in the pitting region, thereby strengthening the repassivation of the film. The excellent corrosion resistance of UNS S32750 is attributed to the strengthening effect of the chromium oxide film due to the presence of molybdenum and nitrogen.

약용식물 추출액이 우산이끼 자가관양배양세포의 생존율, 엽록소함량 및 광합성전자전달 활성에 미치는 영향 (Effects of Several Medicinal Plants Extract on Survival Rate, Chlorophyll Contents and Photosynthetic Electron Transport Activity of Liverwort Photoautotrophic Cultured Cell)

  • 정형진;권순태;김시무
    • 한국작물학회지
    • /
    • 제40권2호
    • /
    • pp.133-141
    • /
    • 1995
  • 약용 식물의 추출액이 자가영양배양세포의 광합성전자전달계에 미치는 영향을 조사하기 위해 9종의 약용식물 추출액으로부터 종자발아, PA세포의 엽록소 억제정도, DCIP의 환원율, 세포 생존율, 광계 I의 전자전달활성, 단백질에 미치는 영향을 조사한 결과는 다음과 같다. 1. 식물의 추출액을 농도별로 처리하였을 때 10% 처리시 전 식물체에서 상추의 발아억제 현상을 나타내었고, 특히 백두옹과 초오 추출물 10% 처리시는 100% 억제를 나타내었다. 2. 백두옹의 증류수 및 MeOH 추출액을 PA세포에 처리한 경우 엽록소의 생성을 100% 억제 하 였다. 이는 광합성 전자전달 저해제로 알려진 DCMU 10-3M 처리와 동일한 억제 효과였다. 3. PA세포에 추출물 처리시 백두옹이 힐반응 억제가 가장 컸으며, 세포 생존력은 가장 낮았다. 4. 광합성 산소발생은 반하, 독활, 백두옹, 만형자 추출액 처리시 14-77% 억제되었고, 특히 PA 세포 2ml 반응액에 백두옹 추출물 60rl 처리시 50% 산소발생 억제를 나타내었다. 5. 추출액을 PA 세포에 처리한 후 단백질을 추출하여 SDS-PAGE를 이용하여 조사한 결과 대조구에 비하여 백두옹 추출물 10% 처리에서 14KD, 31KD, 41KD, 53KD, 73KD의 밴드가 나타나지 않았다.

  • PDF