• Title/Summary/Keyword: oxygen diffusion rate

Search Result 132, Processing Time 0.028 seconds

Influence of Oxidation Inhibitor on Carbon-Carbon Composites: 5. Studies on Anti-oxidation Properties of the Composites (산화억제제 첨가에 의한 탄소/탄소 복합재료의 물성에 관한 연구: 5. 탄소/탄소 복합재료의 내산화성 연구)

  • 박수진;서민강;조민석;이재락
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.237-244
    • /
    • 2000
  • Phenolic resin used as a precursor of carbonized matrix for carbon-carbon composites was modified by addition of molybdenum disilicide (MoSi$_2$) in various concentrations of 0, 4, 12 and 20% by weight to improve the anti-oxidation properties of the composites. The green body was manufactured by a prepreg method and was submitted to carbonization up to 110$0^{\circ}C$. In this work, the oxidation behavior of carbon-carbon composites with MoSi$_2$ as an oxidation inhibitor was investigated at the temperature range of 600-100$0^{\circ}C$ in an air environment. The carbon-carbon composites with MoSi$_2$ showed a significantly improved oxidation resistance due to both the reduction of the porosity formation and the formation of mobile diffusion barrier for oxygen when compared to those without MoSi$_2$. Carbon active sites should be blocked, decreasing the oxidation rate of carbon. This is probably due to the effect of the inherent MoSi$_2$ properties, resulted from a formation of the protective layer against oxygen attack in the composites studied.

  • PDF

Carbon 계 유기막질 Plasma Etching에 있어 COS (Carbonyl Sulfide) Gas 특성에 관한 연구

  • Kim, Jong-Gyu;Min, Gyeong-Seok;Kim, Chan-Gyu;Nam, Seok-U;Gang, Ho-Gyu;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.460-460
    • /
    • 2012
  • 반도체 Device가 Shrink 함에 따라 Pattern Size가 작아지게 되고, 이로 인해 Photo Resist 물질 자체만으로는 원하는 Patterning 물질들을 Plasma Etching 하기가 어려워지고 있다. 이로 인해 Photoresist를 대체할 Hard Mask 개념이 도입되었으며, 이 Hardmask Layer 중 Amorphous Carbon Layer 가 가장 널리 사용되고 지고 있다. 이 Amorphous Carbon 계열의 Hardmask를 Etching 하기 위해서 기본적으로 O2 Plasma가 사용되는데, 이 O2 Plasma 내의 Oxygen Species들이 가지는 등 방성 Diffusion 특성으로 인해, 원하고자 하는 미세 Pattern의 Vertical Profile을 얻는데 많은 어려움이 있어왔다. 이를 Control 하기 인해 O2 Plasma Parameter들의 변화 및 Source/Bias Power 등의 변수가 연구되어 왔으며, 이와 다른 접근으로, N2 및 CO, CO2, SO2 등의 여러 Additive Gas 들의 첨가를 통해 미세 Pattern의 Profile을 개선하고, Plasma Etching 특성을 개선하는 연구가 같이 진행되어져 왔다. 본 논문에서 VLSI Device의 Masking Layer로 사용되는, Carbon 계 유기 층의 Plasma 식각 특성에 대한 연구를 진행하였다. Plasma Etchant로 사용되는 O2 Plasma에 새로운 첨가제 가스인 카르보닐 황화물 (COS) Gas를 추가하였을 시 나타나는 Plasma 내의 변화를 Plasma Parameter 및 IR 및 XPS, OES 분석을 통하여 규명하고, 이로 인한 Etch Rate 및 Plasma Potential에 대해 비교 분석하였다. COS Gas를 정량적으로 추가할 시, Plasma의 변화 및 이로 인해 얻어지는 Pattern에서의 Etchant Species들의 변화를 통해 Profile의 변화를 Mechanism 적으로 규명할 수 있었으며, 이로 인해 기존의 O2 Plasma를 통해 얻어진 Vertical Profile 대비, COS Additive Gas를 추가하였을 경우, Pattern Profile 변화가 개선됨을 최종적으로 확인 할 수 있었다.

  • PDF

Oxidation Behavior of Ag-Cu-Tio Brazing Alloys (Ag-Cu-Ti 브레이징 합금의 산화거동)

  • 우지호;이동복;장희석;박상환
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.1
    • /
    • pp.55-65
    • /
    • 1998
  • The oxidation behavior of Ag-36.8a%Cu-7.4at%Ti alloy brazed on Si3N4 substrate was investigated at 400, 500 and 600$^{\circ}C$ in air. Under this experimental condition Si3N4 and Ag were not oxidized whereas Cu and Ti among the brazing alloy components were oxidizied obeying the parabolic oxidation rate law. The activation energy of oxidation was found to be 80kj/ mol which was smaller than that of pure Cu owing to the presence of oxygen active element of Ti. The outer oxide scale formed from the initial oxidation state was always composed of Cu oxides which were known to be growing by the outward diffusion of Cu ions. As the oxidation progressed the concentration gradient occurred due to the continuous consumption of Cu as Cu oxides and consequently build-up of an Ag-enriched layer below the Cu oxides resulted in the formation of multiple oxide scales composed of Cu oxide (CuO) /Ag-enriched layer/Cu oxide (Cu2O) /Ag-enriched layer. Also the inward diffusing of oxygen through Cu oxide and Ag-enriched layers led to the formation of internal oxides of TiO2.

  • PDF

Multifunctional Indium Tin Oxide Thin Films

  • Jang, Jin-Nyeong;Jang, Yun-Seong;Yun, Jang-Won;Lee, Seung-Jun;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.162-162
    • /
    • 2016
  • We present multifunctional indium tin oxide (ITO) thin films formed at room temperature by a normal sputtering system equipped with a plasma limiter which effectively blocks the bombardment of energetic negative oxygen ions (NOIs). The ITO thin film possesses not only low resistivity but also high gas diffusion barrier properties even though it is deposited on a plastic substrate at room temperature without post annealing. Argon neutrals incident to substrates in the sputtering have an optimal energy window from 20 to 30 eV under the condition of blocking energetic NOIs to form ITO nano-crystalline structure. The effect of blocking energetic NOIs and argon neutrals with optimal energy make the resistivity decrease to $3.61{\times}10-4{\Omega}cm$ and the water vapor transmission rate (WVTR) of 100 nm thick ITO film drop to $3.9{\times}10-3g/(m2day)$ under environmental conditions of 90% relative humidity and 50oC, which corresponds to a value of ~ 10-5 g/(m2day) at room temperature and air conditions. The multifunctional ITO thin films with low resistivity and low gas permeability will be highly valuable for plastic electronics applications.

  • PDF

Photo-degradation of Phenol and Toluene by Using the TiO2-coated Polyethylene Particles (TiO2가 코팅된 Polyethylene 입자를 이용한 페놀과 톨루엔의 광분해)

  • Kim, Dong-Joo;Choi, Sang-Keun;Cho, Jun-Hyung;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.24 no.B
    • /
    • pp.133-138
    • /
    • 2004
  • The photodegradation of phenol and toluene with the $TiO_2$-coated polyethylene (PE) particles were investigated in the slurry type photocatalytic reactor, changing the $TiO_2$ particle sizes, initial phenol and toluene concentrations, and the oxygen flow rate. The nano-sized $TiO_2$ photocatalyst particles were prepared by the diffusion flame reactor and they were coated onto PE particles by using the hybridization system for the efficient recollection of $TiO_2$-coated particles after photodegradation experiments. The degradation efficiencies of phenol and toluene with the $TiO_2$-coated PE particles were more than 90% after photodegradation of 80 minutes for most cases. The efficiencies of photodegradation with the $TiO_2$-coated PE particles were found to be lower than those by the pure $TiO_2$ particles by 50%, because of the decrease in specific surface area of $TiO_2$ particles in PE particles.

  • PDF

Permeation Characteristics of Air and Water Vapor through ABS/filler Hybrid Films (ABS 복합 필름의 공기 및 수증기 투과 특성)

  • Hong, Seong-Uk;Ko, Young-Deok
    • Membrane Journal
    • /
    • v.18 no.3
    • /
    • pp.256-259
    • /
    • 2008
  • In this study, graphite or zeolite 4A was mixed with poly(acrylonitrile-butadiene-strene) (ABS) to make hybrid films, and permeation characteristics of air and water vapor through these films were investigated. In all cases, gas permeabilities of hybrid films were lower than that of pure ABS films. The permeability decrease of oxygen was slightly larger than that of nitrogen, resulting in the little decrease of $O_2/N_2$ selectivity. In addition, the water vapor transfer rates (WVTR) of hybrid films were about half of ABS film's. The decrease of permeabilities may be owing to the increase of tortuosity for diffusion in hybrid films.

Research on the Combustion and Emission Characteristics of the DME/Diesel Dual-fuel Engine (DME/Diesel 듀얼 퓨얼 엔진의 연소 및 배출 특성에 관한 연구)

  • Lim, Ock-Taeck;Pyo, Young-Duck;Lee, Young-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.29-34
    • /
    • 2011
  • This study investigates the potential of DME/Diesel dual fuel engine for reducing emissions with same power. Dual fuel engine controls the combustion using two different fuels, DME and diesel with different auto-ignition timings. In the previous work, the caracteristics of combustion and emissions under single cylinder engine and ignition is done by compression ignition. Pre-mixture is formed by injecting low-pressure DME into an intake manifold and high-pressure fuel (diesel or DME) is injected directly into the cylinder. Both direct diesel injection and port fuel injection reduced the significant amount of Smoke, CO and NOx in the homogeneous charge compression ignition engine due to present of oxygen in DME. In addition, when injecting DME directly in cylinder with port DME injection, there is no changes in emissions and energy consumption rate even operated by homogeneous charge compression ignition.

Electrochemical dehalogenation of disinfection by-products and iodine-containing contrast media: A review

  • Korshin, Gregory;Yan, Mingquan
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.345-353
    • /
    • 2018
  • This paper summarizes results of research on the electrochemical (EC) degradation of disinfection by-products (DBPs) and iodine-containing contrast media (ICMs), with the focus on EC reductive dehalogenation. The efficiency of EC dehalogenation of DBPs increases with the number of halogen atoms in an individual DBP species. EC reductive cleavage of bromine from parent DBPs is faster than that of chlorine. EC data and quantum chemical modeling indicate that the EC reduction of iodine-containing DBPs (I-DBPs) is characterized by the formation of active iodine that reacts with the organic substrate. The occurrence of ICMs has attracted attention due to their association with the generation of I-DBPs. Indirect EC oxidation of ICMs using anodes that produce reactive oxygen species can result in a complete degradation of these compounds yet I-DBPs are formed in the process. Reductive EC deiodination of ICMs is rapid and its overall rate is diffusion-controlled yet I-DBPs are also produced in this reaction. Further progress in practically feasible EC methods to remove DBPs, ICMs and other trace-level organic contaminants requires the development of novel electrocatalytic materials, elimination of mass transfer limitations via innovative design of 3D electrodes and EC reactors, and further progress in the understanding of intrinsic mechanisms of EC reactions of DBPs and TrOC at EC interfaces.

High Quality Nano Structured Single Gas Barrier Layer by Neutral Beam Assisted Sputtering (NBAS) Process

  • Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.251-252
    • /
    • 2012
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low Water Vapor Transition Rate (WVTR) of $1{\times}10^{-6}g/m^2$/day. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2$/day) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study, we developed an $Al_2O_3$ nano-crystal structure single gas barrier layer using a Neutral Beam Assisted Sputtering (NBAS) process. The NBAS system is based on the conventional RF magnetron sputtering and neutral beam source. The neutral beam source consists of an electron cyclotron Resonance (ECR) plasma source and metal reflector. The Ar+ ions in the ECR plasma are accelerated in the plasma sheath between the plasma and reflector, which are then neutralized by Auger neutralization. The neutral beam energies were possible to estimate indirectly through previous experiments and binary collision model. The accelerating potential is the sum of the plasma potential and reflector bias. In previous experiments, while adjusting the reflector bias, changes in the plasma density and the plasma potential were not observed. The neutral beam energy is controlled by the metal reflector bias. The NBAS process can continuously change crystalline structures from an amorphous phase to nano-crystal phase of various grain sizes within a single inorganic thin film. These NBAS process effects can lead to the formation of a nano-crystal structure barrier layer which effectively limits gas diffusion through the pathways between grain boundaries. Our results verify the nano-crystal structure of the NBAS processed $Al_2O_3$ single gas barrier layer through dielectric constant measurement, break down field measurement, and TEM analysis. Finally, the WVTR of $Al_2O_3$ nano-crystal structure single gas barrier layer was measured to be under $5{\times}10^{-6}g/m^2$/day therefore we can confirm that NBAS processed $Al_2O_3$ nano-crystal structure single gas barrier layer is suitable for OLED application.

  • PDF

Electrochemical Behavior of a Nickel Hydroxide Particle for Ni-MH Battery by Microelectrode (마이크로전극에 의한 니켈수소전지용 수산화니켈 입자의 전기화학적 거동)

  • Kim, Ho-Sung;Oh, Ik-Hyun;Lee, Jong-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.145-149
    • /
    • 2007
  • Electrochemical studies were performed for a single particle of nickel hydroxide for the cathode of Ni-MH batteries. A carbon fiber microelectrode was manipulated to make electrical contact with an alloy particle, and electrochemical experiments were performed. As a result of cyclic voltammetry, the oxidation/reduction and oxygen evolution reaction (OER) are clearly separated for a single particle. The total cathodic charge (Qred) is practically constant for the scan rate investigated, indicating that the whole particle has reacted. The total anodic charge(Qox) was larger than that of reduction reaction, and the magnitude of oxygen evolution taking place as a side reaction was enhanced at lower scan rates. As a result of galvanostatic charge and discharge measurement, the discharge capacity of single particle was found to be 250 mAh/g, value being very close to the theoretical capacity (289 mAh/g). The apparent proton diffusion coefficient(Dapp) using potential step method inside the nickel hydroxide was found to range within $3{\sim}4{\times}10^{-9}\;cm^2/s$.