• Title/Summary/Keyword: oxygen consumption

Search Result 737, Processing Time 0.036 seconds

Effects of Electrolytes, pH, Glucose, Acetic acid and Propionic acid on Oxygen Consumption in Clonorchis Sinensis (배양액(培養液)의 성분(成分) 및 배양시간(培養時間)의 변화(變化)에 따른 간흡충(肝吸?)의 산소소비(酸素消費)에 미치는 영향(影響))

  • Kim, Hwa-Woong;Choi, Hyung-Kon;Yun, Byung-Oh;Ha, Young-Ho
    • The Korean Journal of Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.17-22
    • /
    • 1969
  • Oxygen consumption by Clonorchis sinensis (C.S.) was observed in a medium of valuable pH of KRP, lack of certain electrolytes of KRP and of glucose, acetic acid or propionic acid was added to KRP. The results were as follows. 1. In a different solutions, KRP with or without $0.4%-glucose$, $0.9%-saline$ solution, the variation of oxygen consumption by C.S. was not significant. 2. Oxygen consumption by C.S. was inhibited by the solution of KCI, $CaCl_2$, or $MgSO_4$ in a 0.9% solution of saline. 3. Under the acidity, oxygen consumption was enhanced but under the alkality, it was inhibited. 4. Oxygen consumption by C.S. was inhibited by acetic acid or propionic acid in KRP solution. 5. C.S. keeping in KRP solution for a long duration, oxygen cosumption was reduced in the course of time.

  • PDF

The Effect of Co-culture and Oxygen Concentration on In Virto Fertilization of Follicular Oocytes in Korean Native Cattle (공배양 및 산소농도가 한우 난포란의 체외발생에 미치는 영향)

  • 이재관;윤준진;황성수;윤종택;김창근;정영채
    • Korean Journal of Animal Reproduction
    • /
    • v.22 no.1
    • /
    • pp.43-50
    • /
    • 1998
  • The effect of oxygen tension on embryonic development in co-culture was evaluated from the standpoint of the reduction of dissolved oxygen concentration by the oxygen consumption of feeder cells. Three co-culture systems using bovine oviductal epitherial cells (BOEC), African green monkey kidney cells (Vero cells) or buffalo rat liver cells (BRLC) have been compared in terms of development of bovine embryos derived from oocytes matured and fertilized in vitro. Among the co-cultured embryo, Vero cells su, pp.rted the highest developmental rate (29%) and the other two showed the similar rates. When the co-cultures were incubated in three different oxygen tension such as 5, 10, 20% oxygen atmosphere, embryos co-cultured with Vero cells at 10%-O2 resulted in the highest percentage of development. From the measurement of oxygen consumption of feeder cells, BRLC consumed 1.38 10-10 mg-O2/min/cell which was higher than 0.94 10-10 and 0.26 10-10mg-O2/min/cell for Vero cells and BOEC, respectively. Based on the oxygen consumption data, the phenomena of optimum oxygen tension required in embryo development in vitro has been analyzed, and we suggested that gas phase oxygen concentration, oxygen consumption rate of feeder cells and the number of feeder cells should be considered for the design of optimal co-culture system for effective fertilization of embryos in vitro.

  • PDF

Changes in Oxygen Consumption Rates of Embryos in Korean Cattle (한우 수정란의 발달 단계별 산소 소비량 변화)

  • Choe, Chang-Yong;Cho, Sang-Rae;Son, Jun-Kyu;Choi, Sun-Ho;Cho, Chang-Yeon;Kim, Jae-Bum;Kim, Sung-Jae;Kang, Da-Won;Son, Dong-Soo
    • Journal of Embryo Transfer
    • /
    • v.24 no.3
    • /
    • pp.231-235
    • /
    • 2009
  • Oxygen consumption has been regarded as a useful indicator for assessment of mammalian embryo quality. However, there was no standard criterion to measure the oxygen consumption of embryos. Here, we measured oxygen consumption of bovine embryos at various developmental stages was measured using a scanning electrochemical microscopy (SECM). We found that the oxygen consumption significantly increased in blastocyst-stage embryos compared to other stage embryos (from 2-cell-stage to morula-stage), indicating that oxygen consumption reflects the cell number ($5.2{\sim}7.6{\times}10^{14}/mol\;s^{-1}$ versus $1.2{\sim}2.4{\times}10^{14}/mol\;s^{-1}$, p<0.05). In the morula-stage embryos, the oxygen consumption of in vivo derived embryos was significantly higher than that of in vitro produced embryos ($4.0{\times}10^{14}/mol\;s^{-1}$ versus $2.4{\times}10^{14}/mol\;s^{-1}$, p<0.05). However, there was no significant difference in consumption of oxygen by in vivo and in vitro-derived bovine blastocyst-stage embryos (p>0.05). In the frozen-thawed blastocyst-stage embryos, live embryos showed significantly higher oxygen consumption than dead embryos ($4.7{\times}10^{14}/mol\;s^{-1}$ versus $1.0{\times}10^{14}/mol\;s^{-1}$, p<0.05). These results indicate that the measuring oxygen consumption by SECM can be used to evaluate bovine embryo quality.

Development of a Model for Physiological Safe Work Load from a Model of Metabolic Energy for Manual Materials Handling Tasks (에너지 대사량을 고려한 인력물자취급시의 생리적 안전 작업하중 모델 개발)

  • Kim Hong-Ki
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.3
    • /
    • pp.90-96
    • /
    • 2004
  • The objective of this study was to develop a model for safe work load based on a physiological model of metabolic energy of manual material handling tasks. Fifteen male subjects voluntarily participated in this study. Lifting activities with four different weights, 0, 8, 16, 24kg, and four different working frequencies (2, 5, 8, 11 lifts/min) for a lifting range from floor to the knuckle height of 76cm were considered. Oxygen consumption rates and heart rates were measured during the performance of sixteen different lifting activities. Simplified predictive equations for estimating the oxygen consumption rate and the heart rate were developed. The oxygen consumption rate and the heart rate could be expressed as a function of task variables; frequency and the weight of the load, and a personal variable, body weight, and their interactions. The coefficients of determination ($r^2$) of the model were 0.9777 and 0.9784, respectively, for the oxygen consumption rate and the heart rate. The model of oxygen consumption rate was modified to estimate the work load for the given oxygen consumption rate. The overall absolute percent errors of the validation of this equation for work load with the original data set was 39.03%. The overall absolute percent errors were much larger than this for the two models based on the US population. The models for the oxygen consumption rate and for the work load developed in this study work better than the two models based on the US population. However, without considering the biomechanical approach, the developed model for the work load and the two US models are not recommended to estimate the work loads for low frequent lifting activities.

Postprandial Ammonia Excretion and Oxygen Consumption Rates in Olive Flounder Paralichthys olivaceus Fed Two Different Feed Types According to Water Temperature Change

  • Lee, Jinhwan
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.4
    • /
    • pp.373-378
    • /
    • 2015
  • Postprandial ammonia excretion and oxygen consumption in olive flounder Paralichthys olivaceus fed two different feed types, moist pellet (MP) and expanded pellet (EP) diets, to satiation were determined at $12^{\circ}C$, $15^{\circ}C$, $20^{\circ}C$, and $25^{\circ}C$ for 48 h. The ammonia excretion and oxygen consumption rates increased with increasing water temperature. However, the postprandial times for the maximum rates of ammonia excretion and oxygen consumption were shortened from 12 h to 6 h after feeding with increasing water temperature. The ammonia excretion and oxygen consumption rates of the fish fed EP were significantly higher (P < 0.05) than those fed MP at 12 h post-feeding both for $12^{\circ}C$ and $15^{\circ}C$. The highest (P < 0.05) weight-specific ammonia excretion rates at $12^{\circ}C$ were observed in the fish fed EP and MP at $12.1mg\;NH_3-N\;kg^{-1}h^{-1}$ and $8.7mg\;NH_3-N\;kg^{-1}h^{-1}$, respectively, for 12 h and 9 h after feeding. The highest (P < 0.05) weight-specific oxygen consumption rates at $12^{\circ}C$ were observed in fish fed EP and MP at $116.4mg\;kg^{-1}h^{-1}$ and $101.0mg\;kg^{-1}h^{-1}$, respectively, for 12 h after feeding. The highest ammonia excretion rates at $25^{\circ}C$ in the fish fed EP and MP increased to $16.9mg\;NH_3-N\;kg^{-1}h^{-1}$ and $18.3mg\;NH_3-N\;kg^{-1}h^{-1}$, respectively, for 6 h after feeding. The highest (P < 0.05) weight-specific oxygen consumption rates at $25^{\circ}C$ were observed in fish fed EP and MP at $184.3mg\;O_2kg^{-1}h^{-1}$ and $197.3mg\;O_2kg^{-1}h^{-1}$, respectively. These data are valuable for the design of biofilters and development of effluent treatment technologies for the land-based flounder farms.

Physiological rhythms in the Oxygen Consumption and Filtration Rates of the Manila Clam, Ruditapes philippinarum (바지락의 산소비율 및 여수율의 생리적 리듬)

  • 정의영;신윤경;허성범
    • The Korean Journal of Malacology
    • /
    • v.15 no.2
    • /
    • pp.127-131
    • /
    • 1999
  • Changes in Oxygen consumption and filtration rates were investigated to understand physiological rhythms for 24 hours of the Manila clam, Ruditapes philippinarum. physiological rhythms in the oxygen consumption and filtration rates at 15$^{\circ}C$ and 25$^{\circ}C$ were showed diurnal tidal rhythms, appearing two peaks for 24 hours: maximum at night-high tide and minimum at day-low tide. No rapid variations in oxygen consumption and filtration rates for 24 hours appeared at two different water temperatures.

  • PDF

Oxygen Consumption of Hybrid Striped Bass (Morone chrysops ♀ M. saxatilis ♂) Exposed to Different Temperature, Salinity and Photoperiod (수온, 염분 및 광주기에 따른 잡종 striped bass (Morone chrysops ♀ ${\times}$ M. saxatilis ♂)의 산소소비)

  • 임한규;정민환;한형균;이종하;장영진
    • Journal of Aquaculture
    • /
    • v.17 no.4
    • /
    • pp.258-261
    • /
    • 2004
  • The Oxygen consumption of hybrid striped bass (Morone chrysops ♀ M. saxatilis ♂) was measured in relation to water temperature, salinity and photoperiod changes. Fish (574.0101.3 g) was individually exercised in a chamber for 24 h at 2$0^{\circ}C$, 24$^{\circ}C$ and 28$^{\circ}C$ with two salinity conditions (0 and 33 psu). Stepwise, the increase of water temperature induced a strong increase of the oxygen consumption. Salinity and photoperiod had an influence on the oxygen consumption of hybrid striped bass, even though there was not a consistent tendency between those.

Effect of Water Temperature and Photoperiod on the Oxygen Consumption of Four Different Strains of Red Seabream, Pagrus major

  • Oh, Sung-Yong;Choi, Hee Jung;Kim, Min-Suk;Park, Yong Joo;Myoung, Jung-Goo;Kwon, Joon Yeong;Choi, Cheol Young
    • Journal of Marine Life Science
    • /
    • v.1 no.2
    • /
    • pp.109-116
    • /
    • 2016
  • We determined the effects of different water temperatures (15, 20, and 25℃) and photoperiod cycles (24L:0D, 12L:12D, and 0L:24D) on the oxygen consumption of the offspring of a cultured Japanese strain (JJ), a selected Korean strain (KK), and intraspecific hybrid strains (JK and KJ) of red seabream, Pagrus major, under starvation conditions. The different fish strains, water temperatures, and photoperiod cycles had effects on the mean oxygen consumption of fish. Oxygen consumption increased with increasing water temperatures for all photoperiod treatments (p<0.001). Fish held in continuous darkness (0L:24D) used consistently less oxygen than fish exposed to continuous light (p<0.05). The oxygen consumption of fish exposed to the light phase in a 12L:12D photoperiod was higher than that of fish in the dark phase of the 12L:12D cycle, and differences were significant in three of the strains: JJ (15℃), KK (15 and 20℃), and KJ (25℃). The oxygen consumption of the inbred (JJ and KK) and intraspecific hybrid (JK and KJ) strains varied with differing water temperatures and photoperiod cycles. The JK strain displayed significantly higher oxygen consumption than the other strains under all experimental conditions except 15℃ with a 0L:24D photoperiod. The JK and KJ strains usually showed the highest and lowest oxygen consumption values, respectively, whereas the inbred strains exhibited intermediate values. Oxygen consumption in the JJ and JK strains was usually higher than that of the KK and KJ strains. We propose that differences in the thermal sensitivity and photosensitization properties of the strains contribute to differences in their ability to adapt to changes in water temperature and photoperiod, thus resulting in differences in the amplitude of their metabolic rates.

Effects of 2, 2'-Methylene bis-(3,4,6-Trichlorophenoxy Acetic acid) 'MTPA' and Hexachlorophene with or without Sodium Cholate on the Oxygen Consumption in Clonorchis Sinensis (2, 2'Methylene bis (3,4,6 trichlorophenoxy Acetic Acid) 및 Sodium Cholate의 간흡충(肝吸?) 산소소비(酸素消費) 및 살충작용(殺?作用))

  • Kim, Hwa-Woong;Kim, Choong-Young;Yun, Byung-Oh;Ha, Young-Ho
    • The Korean Journal of Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.11-15
    • /
    • 1969
  • The inhibitory action of oxygen consumption and parasiticidal action of hexachlorophene or MTPA combined with or without sodium cholate in Clonorchis sinensis (C.S) have been observed. The results were obtained as follows. 1. In low concentration of MTPA or Hexachlorophene, they inhibited the oxygen consumption of C.S and in high concentration, inhibition of oxygen consumption and parasiticidal action was more remarkable. 2. The oxygen consumption was inhibited also in the concentration of $10^{-2}$ and $2{\times}10^{-3}g/ml$ of sodium cholate. 3. In the presence of sodium cholate, oxygen consumption of C.S was more remarkably inhibited by MTPA or Hexachlorophene than the absence of sodium cholate. 4. From those results, it may be considered that sodium cholate combined with MTPA or Hexachlorophene produced potentiation in its action.

  • PDF

Relative Biopotency of Tri-iodothyronine and Thyroxine for Inducing Oxygen Consumption in Young Chicks (유추의 산소소비량 촉진에 관한 Tri-iodothyronine과 Thyroxine의 생물학적 효력)

  • 황보종;하정기
    • Korean Journal of Poultry Science
    • /
    • v.17 no.2
    • /
    • pp.79-82
    • /
    • 1990
  • An experiment was conducted to evaluate relative biopotency of tri-iodothyronine ($T_3$) and thyroxine ($T_4$) to induce oxygen consumption in young chicks. Four experimental groups of 3 chicks were injected with $T_3$ or $T_4$ at a dose of 500 or 1000mg per kg body weight, and thereafter oxygen consumption was measured by indirect calorimetry using a respiration apparatus. Oxygen consumption was significantly increased at 2 and 4 hour in the $T_3$ or $T_4$ treated chicks at 500mg at 2 hour. From coefficient of a multiple regression equation of oxygen consumption on $T_3$ or $T_4$, it was concluded that $T_3$ was shown to be two to three times as biologically active as $T_4$.

  • PDF