• Title/Summary/Keyword: oxygen cluster

Search Result 111, Processing Time 0.03 seconds

Classification of Major Reservoirs Based on Water Quality and Changes in Their Trophic Status in South Korea (수질 특성에 따른 우리나라 주요 호소 분류 및 호소 영양 상태 변동 특성 분석)

  • Dae-Seong Lee;Da-Yeong Lee;Young-Seuk Park
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.2
    • /
    • pp.156-166
    • /
    • 2022
  • Understanding the characteristics of reservoir water quality is fundamental in reservoir ecosystem management. The water quality of reservoirs is affected by various factors including hydro-morphology of reservoirs, land use/cover, and human activities in their catchments. In this study, we classified 83 major reservoirs in South Korea based on nine physicochemical factors (pH, dissolved oxygen, chemical oxygen demand, total suspended solid, total nitrogen, total phosphorus, total organic carbon, electric conductivity, and chlorophyll-a) measured for five years (2015~2019). Study reservoirs were classified into five main clusters through hierarchical cluster analysis. Each cluster reflected differences in the water quality of reservoirs as well as hydromorphological variables such as elevation, catchment area, full water level, and full storage. In particular, water quality condition was low at a low elevation with large reservoirs representing cluster I. In the comparison of eutrophication status in major reservoirs in South Korea using the Korean trophic state index, in some reservoirs including cluster IV composed of lagoons, the eutrophication was improved compared to 2004~2008. However, eutrophication status has been more impaired in most agricultural reservoirs in clusters I, III, and V than past. Therefore, more attention is needed to improve the water quality of these reservoirs.

Hydrothermal Synthesis, Crystal Structure and EPR Property of Tetranuclear Copper(II) Cluster [Cu4OCl6(C14H12N2)4]

  • Jian, Fang-Fang;Zhao, Pu-Su;Wang, Huan-Xiang;Lu, Lu-De
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.673-675
    • /
    • 2004
  • The tetranuclear copper(II) cluster compound $[Cu_4OCl_6(C_{14}H_{12}N_2)_4]$ has been synthesized by hydrothermal reaction and studied by X-ray diffraction. The four copper(II) atoms locate four capsheaves of a tetrahedral skeletal structure and a oxygen atom as interstitial atom occupies the center position of the same tetrahedron, and each edge of the Cu-Cu tetrahedron is bridged by one ${\mu}_2$-Cl anion. The copper atom possesses slightly distorted trigonal bipyramidal geometry with three ${\mu}_2$-Cl atoms in equatorial position and the interstitial O atom and one N atom from 3-benzyl-benzimidazole ligand occupying axial position. The Cu-Cu distances are in the range of 3.0986-3.1162 ${\AA}$. The EPR spectrum suggested that the copper(II) ground state $d_{x2-y2}$ and the coordination geometry was trigonal bipyramidal.

CLUSTER P-V CONTAINING SYSTEMS FOR THE DECREASING OF POLYMERIC MATERIAL COMBUSTION

  • Kodolov, V.I.;Bystrov, S.G.;Mikhailov, V.I.;Lipanov, A.M.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.104-111
    • /
    • 1997
  • Cluster systems are microcrystals of vanadiumoxided compounds such as Barium, Calcium or Sodium Metavanadates or Sodium Vanadium Bronze which are distributed into dimethyl- or diethylphosphites or microcrystals of vanadium oxides, for instance, vanadium oxide (+3), distributed into the methylphosphonic acid melted. During the interaction of vanadium compounds with the correspondent phosphororganic substances biue viscous liquids are formed. These liquids have paramagnetic properties. According to the UV and IR spectroscopic investigations as well as the results of EPR spectra the substances obtained consist of the nucleus containing 6 to 12 of vanadium atoms and the shell including ligands which are molecules of phosphites or methylphosphonic acid. Here every atom of vanadium interacts with four of phosphorus containing molecules. Sizes of the particles in these systems donot exceed 200 nm. Introduction of cluster systems (0,1 -0,3 % vanadium) into epoxy compositions before the introduction of curing agent - polyethylenepolyamine 6 -8 % leads to the acceleration of composition crosslinking and to the combustion decreasing: 1) Oxygen Index grows to 35: 2)mass losses during combustion decrease to 1-2%, 3) combustion time does not exceed 1 s; 4) the intumescence of material sample is being observed during the burner action as well as the foam coke formation.

  • PDF

Crystal Structures of Fully Dehydrated Zeolite $Cd_6-A$ and of $Rb_{13.5}-A$, the Product of its Reaction with Rubidium, Containing Cationic Clusters

  • Jang, Se-Bok;Kim, Yang;Seff, Karl
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.3
    • /
    • pp.236-241
    • /
    • 1994
  • The crystal structures of $Cd_6-A$ evacuated at $2{\times}10^{-6}$ Torr and 750$^{\circ}$C (a=12.216(l) ${\AA}$), and of the product of its reaction with Rb vapor (a= 12.187(l) ${\AA}$), have been determined by single-crystal x-ray diffraction techniques in the cubic space group Pm$\bar{3}$m at 21(l)$^{\circ}$C. Their structures were refined to the final error indices, $R_1$=0.055 and $R_2$=0.067 with 191 reflections, and $R_1$=0.066 and $R_2$=0.049 with 90 reflections, respectively, for which I>3${\sigma}$(I). In dehydrated $Cd_6-A$, six $Cd^{2+}$ ions are found at two different threefold-axis sites near six-oxygen ring centers. Four $Cd^{2+}$ ions are recessed 0.50 ${\AA}$ into the sodalite cavity from the (111) plane at O(3), and the other two extend 0.28 ${\AA}$ into the large cavity from this plane. Treatment at 250 $^{\circ}$C with 0.1 Torr of Rb vapor reduces all $Cd^{2+}$ ions to give $Rb_{13.5^-}$A. Rb species are found at three crystallographic sites: three $Rb^+$ ions lie at eight-oxygen-ring centers, filling that position, and ca. 10.5 $Rb^+$ ions lie on threefold axes, 8.0 in the large cavity and 2.5 in the sodalite cavity. In this structure, ca. 1.5 Rb species more than the 12 $Rb^+$ ions needed to balance the anionic charge of zeolite framework are found, indicating that sorption of $Rb^0$ has occurred. The occupancies observed can be most simply explained by two "unit cell" compositions, $Rb_{12^-}A{\cdot}Rb$ and $Rb_{12^-}A{\cdot}2Rb$, of approximately equal population. In sodalite cavities, $Rb_{12^-}A{\cdot}Rb$ would have a $(Rb_2)^+$ cluster and $Rb_{12^-}A{\cdot}2Rb$ would have a triangular $(Rb_3)^+$ cluster. Each of the atoms of these clusters must bind further through a six-oxygen ring to a large cavity $Rb^+$ to give $(Rb_4)^{3+}$ (linear) and $(Rb_6)^{4+}$ (trigonal). Other unit-cell compositions and other cationic cluster compositions such as $(Rb_8)^{n+}$ may exist.

Active role of oxygen on penicillin sensitivity and fromation of membrane protein in escherichia coli K12 (Escherichia coli K12의 막단백질 형성과 페니실린 민감성에 대한 산소의 능동적 역할)

  • 박현근;한홍의
    • Korean Journal of Microbiology
    • /
    • v.24 no.3
    • /
    • pp.263-269
    • /
    • 1986
  • Membrane proteins of facultatively anaerobic Escherichia coli K12 which was logarithmically grown in aerobiosis and anaerobiosis were compared on 5 to 10% liner gradient gel electrophoresis (Na Dod $SO_4 -PAGE$). Membrane proteins were formed as different patterns between aerobiosis and anaerobiosis. Among them, 91Kdal protein (pbp1a) was not synthesized in aerobiosis and 60Kdal protein (fts cluster), in anaerobiosis. Thereby cells cultured aerobically were differenciated as diversiform cell shape, comparing cells cultured anaerobically and the latter were resistant to penicillin G. Thus it is believed that in facultative anaerobes atmospheric oxygen regulated the synthesis of membrane proteins and even the expression of equivalent genes, and moreover alleviated the resistance to an antibiotic penicillin.

  • PDF

Properties of $Cl^-$ Binding Site in Oxygen-Evolving Complex of Photosystem II Studied by FTIR Spectroscopy

  • Koji Hasegawa;Kim, Yukihiro ura;Asako Ishii;Jun Minagawa;Ono, Taka-aki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.376-378
    • /
    • 2002
  • Role of cl$^{[-10]}$ in photosynthetic oxygen-evolving complex was studied by light-induced Fourier transform infrared (FTIR) spectroscopy. cl$^{[-10]}$ depletion resulted in the suppression of amide I and amide II IR modes upon S$_1$ to S$_2$ transition. Br$^{[-10]}$ , 1$^{[-10]}$ and N0$_3$$^{[-10]}$ substituted FTIR difference spectra were very similar to that in cl$^{[-10]}$ reconstitution. F$^{[-10]}$ and $CH_3$COO$^{[-10]}$ substituted spectra were largely distorted. We succeeded in detecting the structural change of N0$_3$ $^{[-10]}$ in the cl$^{[-10]}$ site upon the S$_1$ to S$_2$ transition from $^{14}$ N0$_3$$^{[-10]}$ /$^{15}$ N0$_3$$^{[-10]}$ difference spectrum.

  • PDF

Long-term Variation and Characteristics of Water Quality in the Asan Coastal Areas of Yellow Sea, Korea (아산연안 수질환경의 특성과 장기변동)

  • Park, Soung-Yun;Kim, Hyung-Chul;Kim, Pyoung-Joong;Park, Gyung-Soo;Park, Jeung-Sook
    • Journal of Environmental Science International
    • /
    • v.16 no.12
    • /
    • pp.1411-1424
    • /
    • 2007
  • Long-term trends and distribution patterns of water quality were investigated in the Asan coastal areas of Yellow Sea, Korea from 1975 to 2005. Water samples were collected at 3 stations and physicochemical parameters were analyzed including water temperature, salinity, suspended solids(SS), chemical oxygen demand(COD), dissolved oxygen(DO) and nutrients. Spatial distribution patterns were not clear among stations but the seasonal variations were distinct except COD, SS and nitrate. The trend analysis by principal component analysis(PCA) during twenty years revealed the significant variations in water quality in the study area, Annual water qualities were clearly discriminated into 4 clusters by PCA; year cluster 1988-1991, 1994-1997, and 1992-1993/1998-2005. By this multi-variate analysis we can summarize the annual trends as the followings; salinity, suspended solids and dissolved oxygen tended to increase from late 1980's, increased pH and COD from 1992, and decreased salinity and increased nitrogen and COD from 1990 due to the runoff frow agricultural lands causing eutrophication.

Realistic adsorption behaviors of the copper onto the functionalized CNTs

  • Park, Mi-Na;Kim, Byeong-Hyeon;Lee, Gwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.476-476
    • /
    • 2011
  • Introduction of CNTs into a metal matrix has been considered to improve the mechanical properties of the metal matrix. However, the binding energy between metals and pristine CNTs wall is known to be so small that the interfacial slip between CNTs and the matrix occurs at a relatively low external stress. The interfacial strength between CNT and metal matrix is thus one of the key factors for successful development of the CNT/metal composites. Defective or functionalized CNT has been considered to enhance the interfacial strength of nanocomposites. In the present work, we design the various realistic hybrid structures of the single wall CNT/Cu complexes and characterize the interaction between single wall CNTs and Cu nano-particle and Cu13 cluster using first principle calculations. The characteristics of functionalized CNTs with various surface functional groups, such as -COOH, -OH, and -O interacting with Cu are investigated. We found that the binding energy can be enhanced by the surface functional group including oxygen since the oxygen atom can mediate and reinforce the interaction between carbon and Cu. These results strongly support the recent experimental work which suggested the oxygen on the interface playing an important role in the excellent mechanical properties of the CNT/Cu composite.

  • PDF

Cluster and Factor Analyses Using Water Quality Data in the Sapkyo Reservoir Watershed (삽교호유역의 수질자료를 이용한 군집분석 및 요인분석)

  • Im, Chang-Su;Sin, Jae-Gi
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.149-159
    • /
    • 2002
  • The monthly water quality data measured at 19 stations located in the Sapkyo reservoir watershed were clustered into 2 to 7 clusters and factor analysis was conducted to characterize the water quality, using the information obtained from cluster analysis. The result of cluster analysis shows that Sapkyo reservoir and each stream (Sapkyo stream, Muhan stream and Kokkyo stream) in Sapkyo reservoir watershed hove their own water quality characteristics. The result of water quality analysis indicates that the concentration of suspended solids from Sapkyo reservoir is much higher than those of other streams, and which is probably because of increment of phytoplankton biomass with rich nutrient flowing Into Sapkyo reservoir from the upper stream of watershed. Furthermore, the concentrations of biochemical oxygen demand and chemical oxygen demand were 3.5 to 4.8 times and 1.7 to 2.5 times those of other streams, respectively. The overall water quality of Sapkyo reservoir watershed was considered to exceed eutrophic condition. Based on factor analysis, the water quality characteristics of Sapkyo stream and Muhan stream were closely related with farm land and residence. The water quality of Kokkyo stream was influenced by superabundant organic matter flowing from Chonan city and district wastewater treatment plant located in the upper stream of Kokkyo stream. The water quality factor influencing Sapkyo reservoir was closely related with water quality factors of other three streams.

Biological Inspiration toward Artificial Photostystem

  • Park, Jimin;Lee, Jung-Ho;Park, Yong-Sun;Jin, Kyoungsuk;Nam, Ki Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.91-91
    • /
    • 2013
  • Imagine a world where we could biomanufacture hybrid nanomaterials having atomic-scale resolution over functionality and architecture. Toward this vision, a fundamental challenge in materials science is how to design and synthesize protein-like material that can be fully self-assembled and exhibit information-specific process. In an ongoing effort to extend the fundamental understanding of protein structure to non-natural systems, we have designed a class of short peptides to fold like proteins and assemble into defined nanostructures. In this talk, I will talk about new strategies to drive the self-assembled structures designing sequence of peptide. I will also discuss about the specific interaction between proteins and inorganics that can be used for the development of new hybrid solar energy devices. Splitting water into hydrogen and oxygen is one of the promising pathways for solar to energy convertsion and storage system. The oxygen evolution reaction (OER) has been regarded as a major bottleneck in the overall water splitting process due to the slow transfer rate of four electrons and the high activation energy barrier for O-O bond formation. In nature, there is a water oxidation complex (WOC) in photosystem II (PSII) comprised of the earthabundant elements Mn and Ca. The WOC in photosystem II, in the form of a cubical CaMn4O5 cluster, efficiently catalyzes water oxidation under neutral conditions with extremely low overpotential (~160 mV) and a high TOF number. The cluster is stabilized by a surrounding redox-active peptide ligand, and undergo successive changes in oxidation state by PCET (proton-coupled electron transfer) reaction with the peptide ligand. It is fundamental challenge to achieve a level of structural complexity and functionality that rivals that seen in the cubane Mn4CaO5 cluster and surrounding peptide in nature. In this presentation, I will present a new strategy to mimic the natural photosystem. The approach is based on the atomically defined assembly based on the short redox-active peptide sequences. Additionally, I will show a newly identified manganese based compound that is very close to manganese clusters in photosystem II.

  • PDF