• Title/Summary/Keyword: oxygen chemisorption

Search Result 22, Processing Time 0.022 seconds

Competitive Adsorption of CO2 and H2O Molecules on the BaO (100) Surface: A First-Principle Study

  • Kwon, Soon-Chul;Lee, Wang-Ro;Lee, Han-Na;Kim, J-Hoon;Lee, Han-Lim
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.988-992
    • /
    • 2011
  • $CO_2$ adsorption on mineral sorbents has a potential to sequester $CO_2$. This study used a density functional theory (DFT) study of $CO_2$ adsorption on barium oxide (BaO) in the presence of $H_2O$ to determine the role of $H_2O$ on the $CO_2$ adsorption properties on the ($2{\times}2$; $11.05\;{\AA}{\times}11.05\;{\AA}$) BaO (100) surface because BaO shows a high reactivity for $CO_2$ adsorption and the gas mixture of power plants generally contains $CO_2$ and $H_2O$. We investigated the adsorption properties (e.g., adsorption energies and geometries) of a single $CO_2$ molecule, a single $H_2O$ molecule on the surface to achieve molecular structures and molecular reaction mechanisms. In order to evaluate the coordinative effect of $H_2O$ molecules, this study also carried out the adsorption of a pair of $H_2O$ molecules, which was strongly bounded to neighboring (-1.91 eV) oxygen sites and distant sites (-1.86 eV), and two molecules ($CO_2$ and $H_2O$), which were also firmly bounded to neighboring sites (-2.32 eV) and distant sites (-2.23 eV). The quantum mechanical calculations show that $H_2O$ molecule does not influence on the chemisorption of $CO_2$ on the BaO surface, producing a stable carbonate due to the strong interaction between the $CO_2$ molecule and the BaO surface, resulting from the high charge transfer (-0.76 e).

Characteristics of Pd Catalysts for Methane Oxidation (메탄 산화를 위한 Pd 촉매의 특성)

  • Lee, Jin-Man;Yang, O-Bong;Kim, Chun-Yeong;Woo, Seong-Ihl
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.557-562
    • /
    • 1999
  • The reaction properties of Pd. Pd-Ce and Pd-La catalysts supported on ${\gamma}-Al_2O_3$ were investigated in the oxidation reaction of methane($CH_4$) exhausted from the compressed natural gas vehicle in a U-tube flow reactor with gas hourly space velocity of $72,000h^{-1}$. The catalysts were characterized by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), BET surface area and hydrogen chemisorption. Pd catalyst prepared by $Pd(NO_3)_2$ as a palladium precursor and calcined at $600^{\circ}C$ showed the highest activity for a methane oxidation. Catalytic activity of calcined $Pd/{\gamma}-Al_2O_3$ in which most of palladium was converted into palladium oxide species was higher than that of reduced $Pd/{\gamma}-Al_2O_3$ in which most of palladium existed in palladium metal by XRD. As increasing the number of reaction cycles in the wide range of redox, the catalytic activity of $Pd/{\gamma}-Al_2O_3$ was decreased and the highly active window became narrower. Lanthanum oxide promoted Pd catalyst, $Pd/La/{\gamma}-Al_2O_3$ showed enhanced thermal stability compared with $Pd/{\gamma}-Al_2O_3$ even after aging at $1000^{\circ}C$, which was ascribed to the role of La as a promoter to suppress the sintering of palladium metal and ${\gamma}-Al_2O_3$ support. Almost all of methane was removed by the reaction with NO at the redox ratio of 1.2 in case of oxygen excluded steam, but that activity was significantly decreased in the steam containing oxygen.

  • PDF