• Title/Summary/Keyword: oxygen

Search Result 15,888, Processing Time 0.044 seconds

Oxygen Transfer in Microbial System (미생물 배양 시스템에서의 산소 전달)

  • 최동원
    • The Korean Journal of Food And Nutrition
    • /
    • v.7 no.4
    • /
    • pp.399-405
    • /
    • 1994
  • Some method was introduced to explain oxygen transfer from broth to cell during aerobic microbe cultivation. It is explained by 5 steps that how desolved oxygen can reach to cell. Among these steps film resistance was the most important factor to describe oxygen transfer. Lumped model and distributed model was introduced to explain oxygen diffusion rate and oxygen consumption rate which occurs in the microbe pellet.

  • PDF

Effect of Oxygen Concentration, Physical Trauma on Proliferation of Umbilical Cord Blood-derived Mesenchymal Stem Cells (산소 농도의 변화와 물리적 손상이 제대혈 중간엽 줄기세포의 증식에 미치는 영향)

  • Park, Ran-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.4
    • /
    • pp.803-807
    • /
    • 2011
  • Human umbilical Mesenchymal Stem Cell(uMSC) has been known as one of major component to regenerate connective tissues such as bone, cartilage, fat and others. The effect of low(5%), normotensive(20%) oxygen and freezing-thawing damage on proliferation of uMSC were investigated. low oxygen concentration culture of uMSC resulted in enhanced proliferation significantly($p$ <0.05) than 20% of oxygen culture. After the freezing-thawing injury to uMSC, 5% oxygen culture showed marked proliferation of uMSC than that of 20% oxygen($p$ <0.05) in the 5th passage of uMSC. Expression of antioxidant enzymes such as superoxide anion 1 and glutathione peroxidase 1 appeared marked in 20% oxygen cultured uMSC, which suggest oxidative stress could induce less proliferation of uMSC. Above findings would suggest proliferation of uMSC in 5% of oxygen will give more yields.

Experimental Study for Oxygen Methane MILD Combustion in a Laboratory Scale Furnace (Laboratory Scale 연소로를 적용한 산소 메탄 MILD 연소에 대한 실험적 연구)

  • Lee, Pil Hyong;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.6-15
    • /
    • 2016
  • The oxygen fuel MILD (Moderate or Intense Low-oxygen Dilution) combustion has been considered as one of the promising combustion technology for flame stability, high thermal efficiency, low emissions and improved productivity. In this paper, the effect of oxygen and fuel injection condition on formation of MILD combustion was analyzed using lab scale oxygen fuel MILD combustion furnace. The results show that the flame mode was changed from a diffusion flame mode to a split flame mode via a MILD combustion flame mode with increasing the oxygen flow rate. A high degree of temperature uniformity was achieved using optimized combination of fuel and oxygen injection configuration without the need for external oxygen preheating. In particular, the MILD combustion flame was found to be very stable and constant flame temperature region at 7 KW heating rate and oxygen flow rate 75-80 l/min.

A Molecular Dynamics Study of the Interaction of Oxygen Molecules with a Water Droplet

  • Ambrosia, Matthew Stanley
    • Journal of Environmental Science International
    • /
    • v.27 no.10
    • /
    • pp.901-906
    • /
    • 2018
  • Water and oxygen are two of the most essential molecules for many species on earth. Their unique properties have been studied in many areas of science. In this study, the interaction of water and oxygen molecules was observed at the nano-scale. Using molecular dynamics, a water droplet with 30,968 water molecules was simulated. Then, 501 oxygen molecules were introduced into the domain. A few oxygen molecules were attracted to the surface of the water droplet due to van der Waals forces, and some oxygen molecules actually entered the water droplet. These interactions were visualized and quantified at four temperatures ranging from 280 to 370 K. It was found that at high temperatures, there was a higher possibility of the oxygen molecules penetrating the water droplet than that at lower temperatures. However, at lower temperatures, oxygen molecules were more likely to be found interacting at the surface of the water droplet than at high temperatures.

The Oxygen Transfer and Oxygen Uptake in Antibiotic Fermentation using Streptomyces kanamyceticus (항생물질발효에서의 산소전달 및 흡수속도에 관한 연구)

  • Lee, Kye-Joon;Moo Bae
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.3
    • /
    • pp.223-226
    • /
    • 1982
  • The aim of the present study was to assess the oxygen transfer rate and oxygen uptake rate in antibiotic fermentation. As a model study, cultures of Streptomyces kanamyceticus in a complex medium were analyzed to evaluate the oxygen transfer and uptake rates using oxygen balance technique. Quantitative evidence for the effect of oxygen transfer rate on the volumetric antibiotic production was clearly demonstrated. The oxygen uptake rates and the specific oxygen requirements were significantly changed with culture time. Those phenomena were indicative of biological turnover in the antibiotic fermentation.

  • PDF

Adsorption of molecular oxygen and $SO_2$ on Ni(100)

  • Hyunsukl Jeong;Changmin;Kim, Eunha;Hojun Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.180-180
    • /
    • 1999
  • The interaction of oxygen with a Ni(100) surface has been investigated using X-ray Photoelectron Spectroscopy (XPS) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) technique. Below 200L oxygen exposure, molecular oxygen was dissociated to atomic oxygen. Increasing oxygen exposure, -1s binding energy shifted from 531.0 eV to 533.0 eV due to molecular adsorption. The presence of molecular oxygen species was confirmed by NEXAFS. Molecular oxygen adsorbed on Ni(100) was oriented perpendicular to the surface. Upon heating over 150K molecular adsorbed oxygen surface was also analyzed using NEEXFS.

  • PDF

Simultaneous measurement of oxygen permeability by using of multi-functional oxygen electrode (다기능 산소전극에 의한 산소투과특성 동시측정)

  • 이동희;정진휘;유형풍;김태진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.532-535
    • /
    • 2000
  • We have fabricated a sensor system for on-line monitoring the oxygen permeability and diffusivity of six different polymer films using the miniaturized 6 cathode(Ag)-single anode(Ag/AgCl) type hexagonal oxygen electrode. This system consists of multiple input front-end electronics, signal conditioning circuit using the embedded microcontroller 80C196KC, PC interface circuit and PC with the OS for microcontroller and the operating program for this system. The digital low-[ass filter was programmed and the simulated filter characteristics were enough to eliminate the noise from sensor signal. According to the experimental results, the linearity coefficients of the output voltage to oxygen partial pressure for each sensor electrode of six cathode type oxygen sensor are 0.998, 0.997, 0.998, 0.997, 0.997, 0.997 respectively, and the response times are all within 4 minutes.

  • PDF

Electrochemical and Spectroelectrochemical Studies of Cobalt Salen and Salophen as Oxygen Reduction Catalysts

  • Bertha Ortiz;Park, Su Mun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.405-411
    • /
    • 2000
  • Electrochemical and spectroelectrochemical studies of cobalt-Schiff (Co-SB) base complexes, Co(salen) [N-N'-bis(salicylaldehyde)-ethylenediimino cobalt(II)] and Co(salophen) [N-N'-bis(salicylaldehyde)-1,2-pheny-lenediimino cobalt(II)], have been c arried out to test them as oxygen reduction catalysts. Both compounds were found to form an adduct with oxygen and exhibit catalytic activities for oxygen reduction. Comparison of spec-tra obtained from electrooxidized complexes with those from Co-SB complexes equilibrated with oxygen in-dicates that the latter are consistent with the postulated complex formed with oxygen occupying the coaxial ligand position, namely, Co(III)-SB·O2 - .The catalysis of oxygen reduction is thus achieved by reducing Co(III) in the oxygen-Co-SB adduct, releasing the oxygen reduction product, e.g., O2 - ., from the Co(II)-SB complex.

Oxygen Adsorption Process on ZnO Single Crystal

  • 전진;한종수
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.11
    • /
    • pp.1175-1179
    • /
    • 1997
  • The adsorption of oxygen on ZnO was monitored by measuring the capacitance of two contacting crystals which have depletion layers originated from the interaction between oxygen and ZnO at 298 K-473 K. An admission of oxygen to the sample induced an irreversible increase in the depth and the amount of adsorbed oxygen was less than 0.001 monolayer in the experimental condition. The relation between pressure of oxygen and variation of the depth was tested from the view point of Langmuir or Freundlich isotherm. Using Hall effect measurement and kinetic experiment, a model equation on the adsorption process was proposed. From the results, it was suggested that oxygen adsorption depended on the rate of electron transfer from ZnO to oxygen while the amount of adsorbed oxygen was kinetically restricted by the height of surface potential barrier.

On a Reading Aloud to Relieve the Decrease in Blood Oxygen Saturation when Jogging

  • Tian, Zhixing;Bae, MyungJin
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.95-100
    • /
    • 2020
  • Recently, the problem of hypoxia caused by jogging is attracting attention. To solve this problem, this paper proposed a new solution. This paper proved that as a vocalization method of reading aloud, it is possible to increase air intake and activate lung function to exchange more air and obtain more oxygen. Then, blood oxygen saturation was used as an evaluation index for the body's oxygen content level to prove its effectiveness. A photoelectric pulse oximeter developed on the basis of different light absorption principles in blood was used to test blood oxygen saturation. Experimental results show that a certain degree of hypoxia is induced when a lot of oxygen is required due to jogging. Therefore, it was proved that the new vocal breathing method by reading books can increase the blood oxygen saturation of the body and improve the hypoxia of the body. Reading vocal breathing is a simple and efficient oxygen saturation recovery breathing method.