• Title/Summary/Keyword: oxygen

Search Result 15,999, Processing Time 0.039 seconds

Oxygen contents monitoring in the building for launch and test facilities (발사대 및 시험장 건물 내의 산소농도 관리)

  • Kim, Ji-Hoon;Yoo, Byung-Il;Cho, Sang-Yeon;Kang, Sun-Il;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.246-249
    • /
    • 2009
  • Test and launch facilities which use oxygen as the propellant of a launch vehicle have hazards of fire and explosion by the leakage of oxygen. Also, the personnel operating the facilities, which use the high-pressured gases like nitrogen and helium in the closed room, is exposed to the hazard of death from suffocation. Consequently, we should keep out of the hazards and the accidents by monitoring the contents of oxygen in the air. The method and the system construction for monitoring oxygen contents in the air and the results from its application to Naro space center are described on this paper.

  • PDF

An Experimental and Numerical Study on the Oxy-MILD Combustion at Pilot Scale Heating Capacity (Pilot급 산소 MILD 연소에 관한 실험 및 수치해석적 연구)

  • Cha, Chun-Loon;Lee, Ho-Yeon;Hwang, Sang-Soon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.7
    • /
    • pp.275-282
    • /
    • 2016
  • MILD (Moderate and Intense Low-oxygen Dilution) combustion using oxygen as an oxidizer is considered as one of the most promising combustion technologies for high energy efficiency and for reducing nitrogen oxide and carbon dioxide emissions. In order to investigate the effects of nozzle angle and oxygen velocity conditions on the formation of oxygen-MILD combustion, numerical and experimental approaches were performed in this study. The numerical results showed that the recirculation ratio ($K_V$), which is an important parameter for performing MILD combustion, was increased in the main reaction zone when the nozzle angle was changed from 0 degrees to 15 degrees. Also, it was observed that a low and uniform temperature distribution was achieved at an oxygen velocity of 400 m/s. The perfectly invisible oxy-MILD flame was observed experimentally under the condition of a nozzle angle of $10^{\circ}$ and an oxygen velocity of 400 m/s. Moreover, the NOx emission limit was satisfied with NOx regulation of less than 80 ppm.

Spectroscopic and Morphological Investigation of Copper Oxide Thin Films Prepared by Magnetron Sputtering at Various Oxygen Ratios

  • Park, Ju-Yun;Lim, Kyoung-A;Ramsier, Rex D.;Kang, Yong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3395-3399
    • /
    • 2011
  • Copper oxide thin films were synthesized by reactive radio frequency magnetron sputtering at different oxygen gas ratios. The chemical and physical properties of the thin films were investigated by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). XPS results revealed that the dominant oxidation states of Cu were $Cu^0$ and $Cu^+$ at 0% oxygen ratio. When the oxygen ratios increased above 5%, Cu was oxidized as CuO as detected by X-ray induced Auger electron spectroscopy and the $Cu(OH)_2$ phase was confirmed independent of the oxygen ratio. The valence band maxima were $1.19{\pm}0.09$ eV and an increase in the density of states was confirmed after formation of CuO. The thickness and roughness of copper oxide thin films decreased with increasing oxygen ratio. The crystallinity of the copper oxide films changed from cubic Cu through cubic $Cu_2O$ to monoclinic CuO with mean crystallite sizes of 8.8 nm (Cu) and 16.9 nm (CuO) at the 10% oxygen ratio level.

Effect of applied magnetic fields on oxygen transport in magnetic Czochralski growth of silicon (Czochralski 방법에 의한 실리콘 단결정 성장에서 자장에 의한 산소의 전달 현상 제어)

  • Chang Nyung Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.3
    • /
    • pp.210-222
    • /
    • 1994
  • The characteristics of flows, temperatures, and concentrations of oxygen are numerically studies in the Czochralski furnace with a uniform axial magnetic field. Important governing factors to the flow fields include buoyancy, thermocapillarity, centrifugal force, magnetic force, diffusion and segregation coefficients of the oxygen, evaporation coefficient in the form of SiO, and ablation rate of crucible wall. With an assumption that the flow fields have reached the steady state, which means that two velocity components in the meridional plane and circumferential velocity, temperatures, electric current intensity become non-transient, then unsteady concentration field of oxygen has been analyzed with an initially uniform oxygen concentration. Oxygen transports due to convection and diffusion in the Czochralski flow field and oxygen flux through the growing crystal surface has been investigated.

  • PDF

Influence of Oxygen Plasma Treatment on Impact Behaviors of Carbon Fibers-reinforced Composites (산소 플라즈마 처리가 탄소섬유강화 복합재료의 충격특성에 미치는 영향)

  • Oh, Jin-Seok;Lee, Jae-Rock;Park, Soo-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.23-26
    • /
    • 2005
  • In this work, effects of oxygen plasma on surfc1ce characteristics of carbon fibers were investigated in impact strength of carbon fibers-reinforced composites. The surface properties of the carbon fibers were determined by acid/base values, FT-IR, and X-ray photoelectron spectroscopy (XPS). Also, the mechanical properties of the composites were studied by impact strength measurements. As experimental results, the $O_{IS}/C_{IS}$ ratio of the carbon fiber surfaces treated by oxygen plasma was increased compared to that of untreated ones, possibly due to development of oxygen-containing functional groups. The mechanical properties of the composites, including impact strength had been improved by the oxygen plasma on fibers. These results could be explained that the oxygen plasma resulted in the increase of the adhesion of between fibers and matrix in a composite system.

  • PDF

A Study on the Oxygen Index of Interior Wallpapers at Elevated Temperature (실내 내장 벽지의 고온산소지수에 대한 연구)

  • Oh, Kyu-Hyung;Lee, Sung-Eun;Kim, Hwang-Jin
    • Fire Science and Engineering
    • /
    • v.22 no.2
    • /
    • pp.57-62
    • /
    • 2008
  • Most of all the Korean home use a wallpaper as a decoration and finishing of interior. One of the fire spread factor in a house is a combustion of wall paper. There were some research concerning oxygen index in a ambient temperature. The purpose of this study is to investigate the difference of oxygen index of a wallpaper between ambient and high temperature and a effect on the fire spreading. Based on the result, the difference of oxygen index between ambient temperature and high temperature showed $5{\sim}8%$. Difference of 0.1% of oxygen index show big differences in combustion length of sample. Therefore, it was found that the decrease of oxygen index at elevated temperature is a important factor in fire spread.

Effect of Dissolved Oxygen on the Stress Cor rosion Cracking Behavior of 3.5NiCrMoV Steels in High Temperature Water

  • Lee, J.H.;Maeng, W.Y.;Kim, U.C.
    • Corrosion Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.178-182
    • /
    • 2003
  • Slow Strain Rate Tests (SSRT) were carried out to investigate the effect of environmental factors on the Stress Corrosion Cracking (SCC) susceptibility of 3.5NiCrMoV steels used in discs for Low-Pressure (LP) steam turbines in electric power generating plants. The influences of dissolved oxygen on the stress corrosion cracking of turbine steel were studied, For this purpose, specimens were strained at variously oxygenated conditions at $150^{\circ}C$ in pure water. When the specimen was strained with $1{\times}10^{-7}s^{-1}$ at $150^{\circ}C$ in pure water, increasing concentration of dissolved oxygen decreased the elongation and the UTS. The corrosion potential and the corrosion rare increased as the amounts of dissolved oxygen increased. The increase of the SCC susceptibility of the turbine steel in a highly dissolved oxygen environment is due to the non protectiveness of the oxide layer on the turbine steel surface and the increase of the corrosion current. These results clearly indicate that oxygen concentration increases Stress Corrosion Cracking susceptibility in turbine steel at $150^{\circ}C$.

Generation of Reactive Oxygen Species by Nonenzymatic Reaction of Menadione with Protein Thiols in Plasma (Menadione과 Plasma내의 Protein Thiol의 비효소적인 화학반응에 의한 활성산소 생성)

  • 정선화;이무열;이주영;장문정;정진호
    • Toxicological Research
    • /
    • v.13 no.3
    • /
    • pp.223-228
    • /
    • 1997
  • Quinones have been reported to undergo nonenzymatic reaction with thiols to generate reactive oxygens. It is therefore possible that the nonenzymatic reaction of quinones with thiols in plasma could lead to potentJared cellular toxicity or disease. When 1 mM menadione was added in plasma under pH 11.2, 7.4 and 5.0, the increase in oxygen consumption rate was the order of pH 11.2 > pH 7.4 > pH 5.0. In addition, oxygen consumption rates under plasma anticoagulated with trisodium citrate solution (pH 7.85) was significantly higher than those with acid-citrate-dextrose solution (pH 6.87). SOD and catalase reduced the rate of oxygen consumption induced by menadione in plasma. Taken together, these results suggest that the menadione-induced increased oxygen consumption was due to nonenzymatic reaction of menadione with thiols in the plasma. The presence of plasma has an additive effect on the increased oxygen consumption rates induced by the menadione treatments on our model tissue, platelets, as compared between washed platelet (WP) and platelet rich plasma (PRP). Cytotoxicity, as determined by LDH release, are well correlated with the oxygen consumption rates observed in each system and strongly suggest that menadione-induced cytotoxicity can be increased with the presence of blood plasma.

  • PDF

Effects of Hyperbaric Oxygen Treatment on the Malondialdehyde Level and Activities of Catalase and Superoxide Dismutase in the Kidney of the Rats Exposed to Carbon Monoxide (일산화탄소 폭로후 고압산소 투여가 흰쥐 신장에서의 malondialdehyde 함량과 catalase 및 superoxide dismutase 활성에 미치는 영향)

  • 신인철;강주섭;고현철;하지희
    • Biomolecules & Therapeutics
    • /
    • v.7 no.2
    • /
    • pp.121-126
    • /
    • 1999
  • In an attempt to define the effects of hyperbaric oxygen treatment on the lipid peroxidation and oxygen free radical reactions in rats exposed to carbon monoxide, we studied malondialdehyde (MDA) level and activities of catalase and superoxide dismutase in the kidney of the rats exposed to carbon monoxide. Male Sprague-Dawley albino rats weighing 240 to 260 gm were used. Experimental groups consist of Control group (=breathing with air), HBO group (=exposed to hyperbaric oxygen 〔HBO, 3ATA, 100%〕 after air breath), CO group (=exposed to CO〔3,970 ppm〕after air breath), CO-Air group (=exposed to CO after air breath followed by air breath) and CO-HBO group (=exposed to CO after air breath followed HBO treatment). The CO group showed significantly higher MDA level, catalase activity and SOD activity as compared to that of control group. The CO-HBO group showed significantly lower MDA level as compared to that of CO group, and did not show significantly lower catalase activity and SOD activity as compared to that of CO group. These results suggest that the excessive oxygen free radicals is an important determinant in pathogenesis of CO-induced nephrotoxicity and HBO inhibits the lipid peroxidation caused by excessive oxygen free radicals in the kidney of the rats exposed to carbon monoxide.

  • PDF

A Study on Oxygen Permeability of Polypropylene Membranes and their Temperature Dependency using Medical Oxygen Sensor (의료용 산소센서를 이용한 폴리프로필렌계 고분자막의 산소투과도 및 그의 온도변화 특성 연구)

  • 김태진;이진하
    • KSBB Journal
    • /
    • v.19 no.1
    • /
    • pp.62-66
    • /
    • 2004
  • The oxygen permeation characteristics of BOPP, OPP and CPP membranes were studied against various thicknesses and temperatures. The experimental results showed that the present method of using electrochemical oxygen sensor was a convenient method for measurement of membrane permeability of oxygen and its activation energy, while the thickness dependency on permeability has an order of BOPP > CPP > OPP. And the activation energy of oxygen permeability showed different values for each membrane ranging from 13.1 kJ/mol to 28.5 kJ/mol, without depending on membrane thickness, presumably due to its depending upon membrane material itself.