• 제목/요약/키워드: oxidizing gas

검색결과 134건 처리시간 0.018초

국내 경수로형 원자로 냉각재 중의 $^{14}C$ 거동 특성 평가 (Evaluation of $^{14}C$ Behavior Characteristic in Reactor Coolant from Korean PWR NPP's)

  • 강덕원;양양희;박경록
    • 방사성폐기물학회지
    • /
    • 제7권1호
    • /
    • pp.1-7
    • /
    • 2009
  • 본 논문은 국내에서 가동되고 있는 3개 로형의 원자로 냉각재로부터 유기 및 무기 $^{14}C$의 특성을 평가하는데 초점을 맞추었다. 주목적은 국내 원전 부지에서 환경으로 방출되는 $^{14}C$에 대한 신뢰할 만 한 특성을 평가하는데 있다. $^{14}C$는 방사성핵종 인벤토리 중 가장 중요한 핵종중의 하나로서 처분장에서의 방출 시나리오에서 가장 중요한 선량 기여 핵종중의 하나이다. $^{14}C$는 반감기가 5,730 년인 순수 베타방출체로써 환경으로의 이동성이 높을 뿐 아니라 생물학적인 유용성이 높다. 최근의 연구결과에 의하면, 유기화합물 형태의 $^{14}C$는 환원환경 하에서 원자로 냉각재내에서 주종을 이루고 있는 것으로 밝혀졌으며 그 외의 유기화합물인 formaldehyde, formic acid 및 acetate도 함께 형성되는 것으로 알려졌다. 그러나 정지화학 처 리 기간인 산성 산화환경 하에서는 산화성 탄소형태로 바뀌면서 $^{14}CO_2$$H^{14}CO_3^-$형으로 바뀌어 지는 것으로 나타났다. 본 연구에서는 원자력발전소의 다양한 처리계통의 시료에 대해 유기 및 무기화학형의 $^{14}C$ 농도를 측정, 평가하였다 원자로 계통 내에서의 $^{14}C$ 인벤토리는 약 3.1 GBq/kg로 나타났으며 냉각재 계통 내에서는 주로 유기화학형 이 주종을 이루고 있었으며 무기화학형은 10% 이내인 것으로 나타났다 용액중의 $^{14}C$ 측정은 기상과 액상으로 분리하여 분석하였다. 정상 운전 중에는 유기화학형의 $^{14}C$가 주종을 이루고 있지만 발전소의 배기구를 통해 방출되는 $^{14}C$의 화학형은 온도, pH, 체적제어탱크의 방출 및 정지화학 처리에 따라 화학형이 달라지고 있는 것으로 나타났다.

  • PDF

청원지역 시추공 지하수의 수리화학 및 자연방사성물질 산출 특성 (Hydrochemistry and Occurrence of Natural Radioactive Materials within Borehole Groundwater in the Cheongwon Area)

  • 정찬호;김문수;이영준;한진석;장효근;조병욱
    • 지질공학
    • /
    • 제21권2호
    • /
    • pp.163-178
    • /
    • 2011
  • 이 연구에서는 지하수내 존재하는 우라늄과 라돈-222와 같은 자연방사성물질 산출과 지화학적 상관관계를 알아보기 위하여 연구용 부지(충북 청원군 부용면 갈산리)에 120 m 심도로 시추하고, 심도별로 채취된 지하수의 화학적 특성과 시추코어의 암석화학적 특성을 분석하였다 시추코어상 주요 암종은 흑운모편암과 흑운모화강암이며 일부 구간에서 반상화강암과 염기성암맥이 확인되었다. 더블패커 시스템으로 채취한 6개 구간에서 지하수의 pH는 5.66~8.34 범위를 보이고, 화학적 유형은 Ca-$HCO_3$ 형으로 속한다. 심도별 및 시기별로 수리화학적 특성 차이를 보인다. 지하수내 우라늄과 라돈-222의 함량은 최고 683 ppb와 7,600 pCi/L를 각각 보이며, 심도 50~70 m구간에서 가장 높은 값을 보인다. 암석 및 광물내 우라늄과 토륨의 함량은 각각 0.51~23.4 ppm과 0.89~62.6 ppm의 범위를 보이며, 흑운모편암에서 가장 많은 방사성포유물(radioactive inclusion)이 관찰되었고, 현미경관찰과 EPMA 분석결과 방사성원소를 함유하는 광물로는 흑운모내 함유된 소량광물인 모나자이트, 일메나이트로 확인되었다. 우라늄은 이들 광물의 주요 구성원소를 치환하여 존재하며, 일부 석영과 장석 입자내에도 우라늄의 산출이 확인되었다. 시추공 심도 -50~-70 m 구간 지하수에서 높은 방사성물질 함량을 보이는 것은 이 구간의 지하수의 화학적 특성, 즉, 약알칼리성의 pH와 산화환경이고, 중탄산의 함량이 높아 우라늄의 용존에 좋은 조건이 된 것으로 보인다. 지하수내 라돈가스의 함량은 우라늄 농도와 대체로 비례하므로 우라늄의 붕괴와 관련된 것으로 보이며, 라돈가스의 기원에 대한 하나의 해석방법으로 헬륨과 네온등 영족기체 동위원소비를 이용한 간접적인 추적방법을 적용할 필요가 있을 것이다.

횡성지역 다양한 지질환경에서 지하수 중 우라늄 및 라돈-222 산출특성 (Occurrences of Uranium and Radon-222 from Groundwaters in Various Geological Environment in the Hoengseong Area)

  • 정찬호;양재하;이유진;이용천;최현영;김문수;김현구;김태승;조병욱
    • 지질공학
    • /
    • 제25권4호
    • /
    • pp.557-576
    • /
    • 2015
  • 지하수내 자연방사성물질인 우라늄과 라돈-222의 산출과 지질특성과의 연관성을 알아보기 위해 단층대를 포함한 화강암, 편마암, 복운모 화강암 등 다양한 지질이 분포하는 횡성지역을 연구대상지역으로 하였다. 이 연구를 위하여 지하수 시료 38점, 지표수 시료 4점을 채취하여 화학성분 분석, 우라늄과 라돈-222의 함량을 분석하였다. 1차 분석결과를 바탕으로 우라늄과 라돈-222의 함량이 미국 EPA 권고기준을 초과한 지하수 16점에 대해서는 2차 분석을 실시하였다. 지하수내 자연방사성물질 산출과 지질과의 상관성을 알아보기 위하여 33개 지점에 대한 지표방사능 세기를 측정하였다. 지하수내 우라늄의 농도는 0.02~49.3 μg/L의 범위를, 라돈-222의 농도는 20~906 Bq/L 범위로 미국 EPA 권고기준치인 30 μg/L와 148 Bq/L을 초과한 시료는 각각 4점과 35점이다. 지하수의 화학적 특성은 Ca(Na)-HCO3 유형에서 Ca(Na)-NO3(HCO3+Cl) 유형 범위까지 분포한다. pH는 5.71~8.66의 범위로 중간 값은 중성 또는 약알카리성의 특성을 보였다. 고함량 우라늄 및 라돈-222의 산출은 편마암-화강암 지질경계부과 화강암내에서 주로 확인되었으며, 우라늄과 라돈의 산출에 대한 상관관계는 뚜렷하지 않다. 불활성 기체인 라돈은 암석내 기원지로부터 주변부에 발달된 단열을 따라서 확산되어 순환하는 지하수에 용해되는 것으로 보이며, 지하수의 유동과 화학성분과의 상관성은 찾아보기 어렵다. 지하수내 우라늄 용해에 유리한 조건은 중성 또는 약알칼리성 환경과 산화 환경이면서 높은 중탄산 함량의 지화학적 조건에서 주로 우라닐 또는 우라닐탄산염 형태로 존재하는 것으로 해석된다.

Mn-Cu/Al2O3 촉매 상에서 NO, CO 및 CH4 동시 산화 (Simultaneous Oxidation of NO, CO, and CH4 over Mn-Cu/Al2O3 Catalyst)

  • 정지은;이창용
    • 공업화학
    • /
    • 제35권1호
    • /
    • pp.1-7
    • /
    • 2024
  • NO, CO 및 CH4의 동시 산화를 위한 4 종의 Mn-M/Al2O3 (M = Cu, Fe, Co, Ce) 촉매를 제조하여 산화 활성을 비교하고, 동시 산화활성이 가장 높은 Mn-Cu/Al2O3 촉매에 대해 XRD, Raman, XPS, O2-TPD 분석을 수행하였다. XRD 분석 결과, Mn-Cu/Al2O3 촉매에서는 담지된 Mn과 Cu는 복합산화물로 존재하였다. Raman 및 XPS 분석을 통해 Mn-Cu/Al2O3 촉매는 Mn-O-Cu 결합의 형성 과정에서 Mn 이온과 Cu 이온 간의 전자 수수가 일어남을 알 수 있었다. XPS O 1s 및 O2-TPD 분석을 통해 Mn-Cu/Al2O3 촉매는 Mn/Al2O3 촉매에 비해 이동성이 우수한 흡착산소 종이 증가했음을 알 수 있었다. Mn-Cu/Al2O3 촉매의 높은 동시 산화 활성은 이러한 결과에 기인한다고 판단된다. Mn-Cu/Al2O3 촉매 상에서 NO는 CO와 CH4 산화를 촉진하지만, NO 산화는 억제되었다. 이는 NO로부터 산화된 NO2가 CO 및 CH4의 산화제로 사용되었기 때문이라고 추측된다. CO와 CH4의 산화 반응은 경쟁하지만 촉매 활성 온도가 다르기 때문에 그 효과가 두드러지지 않았다.