• Title/Summary/Keyword: oxidizer

Search Result 615, Processing Time 0.033 seconds

Analysis on the distribution of nitrogen and phosphorus removing microorganisms and nitrifying activity in a trickling filter (살수여상에서의 질소, 인 제거 미생물 분포 및 질산화 활성 조사)

  • Kim, Dong-Jin;Yoo, Ik-Keun;Ahn, Dae-Hee
    • Journal of Environmental Science International
    • /
    • v.18 no.6
    • /
    • pp.691-698
    • /
    • 2009
  • Trickling filter has been extensively studied for the domestic wastewater treatment especially for the small scale plants in rural area. The performance of the trickling filter depends on the microbial community and their activity in the biofilms on the media. Nitrification. denitrification, and phosphorus removal of the trickling filter from the wastewater depend on the activity and the amount of the specific microorganisms responsible for the metabolism. For the estimation of the performance of a trickling filter, batch nitrification experiment and fluorescence in situ hybridization (FISH) were carried out to measure the microbial activity and its distribution on the media of the trickling filter. Batch nitrification activity measurement showed that the top part of the 1st stage trickling filter had the highest nitrification activity and the maximum activity was 0.002 g $NH_4$-N/g MLVSS${\cdot}$h. It is thought that higher substrate (ammonia) concentration yields more nitrifying bacteria in the biofilms. The dominant ammonia oxidizer and nitrite oxidizer in the biofilm were Nitrosomonas species and genus Nitrospira, respectively, by FISH analysis. Less denitrifiers were found than nitrifiers in the biofilm by the probe Rrp1088 which specifically binds to Rhodobacter, Rhodovulum, Roseobacter, and Paracoccus. Phosphorus accumulating bacteria were mostly found at the surface of the biofilm by probe Rc988 and PAO651 which specifically binds to Rhodocyclus group and their biomass was less than that of nitrifiers.

Effect of Diluents and Oxygen-Enrichness on the Stability of Nonpremixed Flame (산소부화와 희석제에 따른 비예혼합 화염의 안정성)

  • 배정락;이병준
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1458-1464
    • /
    • 2002
  • $CO_2$ is well known greenhouse gas which is the major source of global warming. Reducing $CO_2$ emission in combustion process can be achieved by increasing combustion efficiency, oxygen enriched combustion and recirculation of the emitted $CO_2$ gas. Stability of non-premixed flame in oxygen enriched environment will be affected by the amount of oxygen, kind of diluents and fuel exit velocity. The effects of these parameters on flame liftoff and blowout are studied experimentally oxidizer coflowing burner. Experiments were divided into three cases according as where $CO_2$gas was supplied. - 1) to coflowing air, 2) to fuel with 0$_2$-$N_2$ coflow, 3) to coflowing oxygen. Flame in air coflowing case was lifted in turbulent region. Flame lift and blowout in laminar region with the increase in $CO_2$ volume fraction in $CO_2$-Air mixture makes flame lift and blowout in laminar region. Increase in oxygen volume fraction makes flame stable-i.e. flame liftoff and blowout occur at higher fuel flowrates. Liftoff height was non-linear function of nozzle exit velocity and affected by the $O_2$ volume fraction. It was found that the flame in $O_2$-$N_2$ coflow case was more stable than $O_2$-$CO_2$ case, Liftoff heights vs (nozzle exit velocity/laminar burning velocity)$^{3.8}$ has a good correlation in $O_2$-$CO_2$ oxidizer case.

The Characteristic of Extinguishment of Engine Nacelle Fire Using a Bluff Body (둔각 물체를 이용한 엔진 나셀 화재 소화 특성)

  • Lee, Jung-Ran;Lee, Eui-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.20-25
    • /
    • 2012
  • The purpose of the study is to assess the extinguishing concentration of inert gases in engine nacelle fire. The experiment was performed with a two dimensional rectangular bluff body stabilized flames, where the fuel was ejected to counter flow and co-flow against an oxidizer stream. Two inert gases, $CO_2$ and $N_2$, were used for extinguishing agent in the oxidizer and methane was used for fuel. The main experimental parameters were the direction of injecting fuel, the kinds of agent and the velocity ratio between air and fuel streams, which controlled the mixing characteristic near bluff body and the strength of recirculation zone in the downstream. The result shows the flame structure and the mode were strongly dependent with fuel/air ratio and the fuel jet direction. For both flow configurations, the extinguishing concentration of $CO_2$ was smaller than the $N_2$ because of the large heat capacity of $CO_2$. However, the concentration of inert gasesat blowout was much smaller than those in the cup burner and coflow jet diffusion flames, which implies that the extinction mechanism of bluff body stabilized flames was mainly due to the aerodynamic aspect. Compared to co-flow fuel injection, the extinguishing concentration of inert gases under counter flow configuration was lower. The effect of direction might result from the mixing characteristic and strength of recirculation zonearound a bluff body. More details should be investigated for the characteristic of recirculation zone in the wake of bluff body using the LES(Large Eddy Simulation).

Perspective of Technology for Liquid Rocket Engines (액체로켓엔진 기술 전망)

  • Cho, Won Kook;Ha, Sung Up;Moon, Insang;Jung, Eun Whan;Kim, Jin Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.8
    • /
    • pp.675-685
    • /
    • 2016
  • A research area on liquid rocket engine has been suggested. Downsizing through combustion pressure rise and low price are major issues to gas generator cycle engines. A very high pressure turbopump and material against oxidizer rich environment may be necessary technologies for staged combustion cycle engines. Integrated analysis saving computing time is the trend of rocket engine systems analysis area. Other important research topics are the methane engine for reusable booster to reduce the cost, 3D printing and materials for high temperature or oxidizer rich environment.

An experimental study for the prediction of combustion performance of the Unlike Impinging Quadlet Injector (충돌형 Quadlet 인젝터의 연소성능 예측에 관한 실험적 연구)

  • Kim, J.W.;Park, H.H.;Han, J.S.;Kim, S.J.;Kim, Y.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.44-50
    • /
    • 1999
  • For the prediction of combustion performance of the Unlike Impinging Quadlet Injector (OOOF type), mixing efficiency, mixing characteristic velocity, and efficiency of mixing characteristic velocity were obtained from the cold test. Water/kerosene were used for simulants, The momentum ratio of oxidizer and fuel were mixing correlating parameter. Orifice discharge coefficient, spray pattern and mass distribution were measured. As a result, invasion-depth had strong effect on mixing efficiency, mixing characteristic velocity, and efficiency of mixing characteristic velocity. Mixing efficiency and efficiency of mixing characteristic velocity showed maximum value for momentum ratio 1.67(TMR = 2.5), and fuel rich state showed larger decreasing ratio than oxidizer rich state.

  • PDF

Modeling and Simulation of CCTF Fuel Supply System (연소기연소시험설비(CCTF) 연료공급시스템 해석)

  • Chung, Yong-Gahp;Lee, Kwang-Jin;Cho, Nam-Kyung;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.892-897
    • /
    • 2011
  • The propulsion system of space launch vehicle generates thrust by supplying oxidizer and fuel to combustion chamber. KSLV-II 2nd stage engine, currently under development by KARI, is to use liquid oxygen as a oxidizer and JET-A1 as a fuel. The 2nd stage pump-fed engine is mainly composed of combustion chamber, turbo-pump and engine supply system. To develop liquid propulsion engine, the development of combustion chamber must be preceded. For performance validation of the combustion chamber, the designed and manufactured combustion chamber should be tested in combustion chamber test facility(CCTF). The detailed design for the planned CCTF in Naro Space Center was conducted. The fuel supply system modeling using AMESim was performed based on the results of the detailed design, and the fuel supply characteristics was analyzed in this paper.

  • PDF

The Hybrid Rocket Internal Ballistics with Two-phase Fluid Modeling for Self-pressurizing $N_2O$ I (자발가압 성질을 가진 아산화질소의 2상유체 모델링을 통한 하이브리드 로켓 내탄도 해석 I)

  • Lee, Jung-Pyo;Rhee, Sun-Jae;Woo, Kyoung-Jin;Oh, Ji-Sung;Jung, Sik-Hang;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.45-49
    • /
    • 2011
  • The blow-down oxidizer feed system with self-pressurizing $N_2O$ has more advantages than the regulated system. However, it is difficult to predict the exhaust flow rate because there exist two phases in the $N_2O$ tank - liquid phase and gas phase, and the properties of $N_2O$ in storage tank are varied continuously during blow-down. In this paper, a method that can analyse simply the blow-down oxidizer feed system is studied. The properties of saturated $N_2O$ are found from the NIST data base, and mass flow through the orifice is modeled as NHNE. Cold flow test with hybrid rocket combustor is performed for the comparison where the results should found from the good agreement.

  • PDF

Design of Mixing Head Part of Combustion Chamber for 8tonf Class Staged Combustion Cycle Rocket Engine (8톤급 다단연소 사이클 로켓엔진 연소기 혼합헤드 설계)

  • Kim, Dongki;Ha, Seong up;Moon, Il yoon;Moon, Insang
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.2
    • /
    • pp.34-40
    • /
    • 2015
  • Staged combustion cycle engines are well known to have high combustion efficiencies and specific impulse. In this study, design of mixing head part of combustion chamber for 8tonf class staged combustion cycle rocket engine (ES-08) was performed. Structural stability of the mixing head part of the combustion chamber is very important design factor because it is loaded by high temperature and high pressure of fuel and oxidizer as well as by thrust load simultaneously. Uniformity of flow distributions of the propellants to the injectors is also important factor. First, a basic configuration for the ES-08 mixing head part was designed on the basis of the structural design requirements. And then, the structural analyses were performed on the basic configuration as well as some of reinforced configurations. As the structural analyses results, the most stable configuration was selected for the ES-08 mixing head part. In order to examine the uniformity of the flow distributions of the propellants through the manifold of the mixing head, flow analysis was performed based on the selected configuration. The results of the flow analysis showed that the fuel and the oxidizer were uniformly supplied to the injector.

Numerical Study on Flame Structure and NO Formation Characteristics in Oxidizer-Controlled Diffusion Flames (산화제 제어 확산화염의 화염구조 및 NO 생성 특성에 관한 수치해석적 연구)

  • Lee, Chang-Eon;Han, Ji-Ung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.742-749
    • /
    • 2002
  • Numerical Study with detailed chemistry has been conducted to investigate the flame structure and NOx formation characteristics in oxygen -enhanced(CH$_4$/O$_2$-$N_2$) and oxygen-enhanced-EGR(CH$_4$/O$_2$-$CO_2$) counter diffusion flame with various strain rates. A small amount of $N_2$is included in oxygen-enhanced-EGR combustion, in order to consider the inevitable $N_2$contamination by $O_2$production process or air infiltration. The results are as follows : In CH$_4$/O$_2$-$CO_2$flame it is very important to adopt a radiation effect precisely because the effect of radiation changes flame structure significantly. In CH$_4$/O$_2$-$N_2$flame special strategy to minimize NO emission is needed because it is very sensitive to a small amount of $N_2$. Special attention is needed on CO emission by flame quenching, because of increased CO concentration. Spatial NO production rate of oxygen-enhanced combustion is different from that of air and oxygen-enhanced-EGR combustion in that thermal mechanism plays a role of destruction as well as production. In case CH$_4$/O$_2$-$CO_2$flame contains more than 40% $CO_2$it is possible to maintain the same EINO as that of CH$_4$/Air flame with accomplishing higher temperature than that of CH$_4$/Air flame. EINO decreases with increasing strain rate, and those effects are augmented in CH$_4$/O$_2$flame.

Structure and NO formation characteristics of oxidizer-controlled diffusion flames (산화제 제어 화염의 구조 및 NO 생성 특성)

  • Han, Ji-Woong;Lee, Chang-Eon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.185-190
    • /
    • 2001
  • Numerical Study with detailed chemistry has been conducted to investigate the flame structure and NOx formation characteristics in oxygen-enhanced$(CH_4/O_2-N_2)$ and oxygen-enhanced-EGR$(CH_4/O_2-CO_2)$ counter diffusion flame with various strain rates. A small amount of $N_2$ is included in oxygen-enhanced-EGR combustion, in order to consider the inevitable $N_2$ contamination by $O_2$ production process or air infiltration. The results are as follows : In $CH_4/O_2-CO_2$ flame it is very important to adopt a radiation effect precisely because the effect of radiation changes flame structure significantly. In $CH_4/O_2-N_2$ flame special strategy to minimize NO emission is needed because it is very sensitive to a small amount of $N_2$. Special attention is needed on CO emission by flame quenching, because of increased CO concentration. Spatial NO production rate of oxygen-enhanced combustion is different from that of air and oxygen-enhanced-EGR combustion in that thermal mechanism plays a role of destruction as well as production. In case $CH_4/O_2-CO_2$ flame contains more than 40% $CO_2$ it is possible to maintain the same EINO as that of $CH_4/Air$ flame with accomplishing higher temperature than that of $CH_4/Air$ flame. EINO decreases with increasing strain rate, and those effects are augmented in $CH_4/O_2$ flame. Complementary study is needed with extending the range of strain rate variation.

  • PDF