• 제목/요약/키워드: oxidized DNA damage

검색결과 15건 처리시간 0.02초

Effect of Natural Compounds on Catechol Estrogen-Induced Carcinogenesis

  • Sung, Nam-Ji;Park, Sin-Aye
    • 대한의생명과학회지
    • /
    • 제25권1호
    • /
    • pp.1-6
    • /
    • 2019
  • The hydroxylation of estradiol results in the formation of catechol estrogens such as 2-hydroxyestradiol ($2-OHE_2$) and 4-hydroxyestradiol ($4-OHE_2$). These catechol estrogens are further oxidized to quinone metabolites by peroxidases or cytochrome P450 (CYP450) enzymes. Catechol estrogens contribute to hormone-induced carcinogenesis by generating DNA adducts or reactive oxygen species (ROS). Interestingly, many of the natural products found in living organisms have been reported to show protective effects against carcinogenesis induced by catechol estrogens. Although some compounds have been reported to increase the activity of catechol estrogens via oxidation to quinone metabolites, many natural products decreased the activity of catechol estrogens by inhibiting DNA adduct formation, ROS production, or oxidative cell damage. Here we focus specifically on the chemopreventive effects of these natural compounds against carcinogenesis induced by catechol estrogens.

Oxidative Stress Induced Damage to Paternal Genome and Impact of Meditation and Yoga - Can it Reduce Incidence of Childhood Cancer?

  • Dada, Rima;Kumar, Shiv Basant;Chawla, Bhavna;Bisht, Shilpa;Khan, Saima
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권9호
    • /
    • pp.4517-4525
    • /
    • 2016
  • Background: Sperm DNA damage is underlying aetiology of poor implantation and pregnancy rates but also affects health of offspring and may also result in denovo mutations in germ line and post fertilization. This may result in complex diseases, polygenic disorders and childhood cancers. Childhood cancer like retinoblastoma (RB) is more prevalent in developing countries and the incidence of RB has increased more than three fold in India in the last decade. Recent studies have documented increased incidence of cancers in children born to fathers who consume alcohol in excess and tobacco or who were conceived by assisted conception. The aetiology of childhood cancer and increased disease burden in these children is lin ked to oxidative stress (OS) and oxidative DNA damage( ODD) in sperm of their fathers. Though several antioxidants are in use to combat oxidative stress, the effect of majority of these formulations on DNA is not known. Yoga and meditation cause significant decline in OS and ODD and aid in regulating OS levels such that reactive oxygen speues meditated signal transduction, gene expression and several other physiological functions are not disrupted. Thus, this study aimed to analyze sperm ODD as a possible etiological factor in childhood cancer and role of simple life style interventions like yoga and meditation in significantly decreasing seminal oxidative stress and oxidative DNA damage and thereby decreasing incidence of childhood cancers. Materials and Methods: A total of 131 fathers of children with RB (non-familial sporadic heritable) and 50 controls (fathers of healthy children) were recruited at a tertiary center in India. Sperm parameters as per WHO 2010 guidelines and reactive oxygen species (ROS), DNA fragmentation index (DFI), 8-hydroxy-2'-deoxy guanosine (8-OHdG) and telomere length were estimated at day 0, and after 3 and 6 months of intervention. We also examined the compliance with yoga and meditation practice and smoking status at each follow-up. Results: The seminal mean ROS levels (p<0.05), sperm DFI (p<0.001), 8-OHdG (p<0.01) levels were significantly higher in fathers of children with RB, as compared to controls and the relative mean telomere length in the sperm was shorter. Levels of ROS were significantly reduced in tobacco users (p<0.05) as well as in alcoholics (p<0.05) after intervention. DFI reduced significantly (p<0.05) after 6 months of yoga and meditation practice in all groups. The levels of oxidative DNA damage marker 8-OHdG were reduced significantly after 3 months (p<0.05) and 6 months (p<0.05) of practice. Conclusions: Our results suggest that OS and ODD DNA may contribute to the development of childhood cancer. This may be due to accumulation of oxidized mutagenic base 8OHdG, and elevated MDA levels which results in MDA dimers which are also mutagenic, aberrant methylation pattern, altered gene expression which affect cell proliferation and survival through activation of transcription factors. Increased mt DNA mutations and aberrant repair of mt and nuclear DNA due to highly truncatred DNA repair mechanisms all contribute to sperm genome hypermutability and persistant oxidative DNA damage. Oxidative stress is also associated with genome wide hypomethylation, telomere shortening and mitochondrial dysfunction leading to genome hypermutability and instability. To the best of our knowledge, this is the first study to report decline in OS and ODD and improvement in sperm DNA integrity following adoption of meditation and yoga based life style modification.This may reduce disease burden in next generation and reduce incidence of childhood cancers.

제2형 당뇨병 환자에서 최종당화산물과 heme oxygenase-1의 상관성 (Correlation of advanced glycation end products and heme oxygenase-1 in Korean diabetic patients)

  • 최하늘;구다혜;임정은
    • Journal of Nutrition and Health
    • /
    • 제55권3호
    • /
    • pp.348-358
    • /
    • 2022
  • 본 연구는 한국에서 최초로 시행되는 연구로서, 성인 제2형 당뇨환자에서 혈청 AGEs의 농도에 따라 두 군으로 나눈 뒤 신체계측 및 체조성, 영양소 섭취량, 생화학적 지표를 비교 분석한 연구이다. Low AGEs group과 High AGEs group의 평균 AGEs는 각각 0.4 ± 0.2, 3.4 ± 1.7 ng/mL로 나타났다. 항산화 효소인 HO-1은 High AGEs group이 Low AGEs group에 비해 유의적으로 높게 나타났다. 또한, 전체 연구참여자를 대상으로 연령과 성별을 보정한 후 상관관계를 분석한 결과, 혈청 HO-1 농도와 혈청 AGEs 농도 및 소변 8-OHdG 농도는 양의 상관관계를 가지는 것으로 나타났다. 본 연구를 통해 혈청 HO-1은 당뇨환자 특이적 지표인 AGEs와 더불어 DNA 손상 지표에도 예민하게 반응하는 것을 확인하였으며, 추후 한국 당뇨환자의 산화적 스트레스와 합병증 연구의 근거자료로 널리 사용될 수 있을 것으로 사료된다.

Biochemical Characterization of Transgenic Tobacco Plants Expressing a Human Dehydroascorbate Reductase Gene

  • Kwon, Suk-Yoon;Ahn, Young-Ock;Lee, Haeng-Soon;Kwak, Sang-Soo
    • BMB Reports
    • /
    • 제34권4호
    • /
    • pp.316-321
    • /
    • 2001
  • Dehydroascorbate (DHA) reductase (DHAR, EC 1.8.5.1) catalyzes the reduction of DHA to reduced ascorbate (AsA) using glutathione (GSH) as the electron donor in order to maintain an appropriate level of ascorbate in plant cells. To analyze the physiological role of DHAR in environmental stress adaptation, we developed transgenic tobacco (Nicotiana tabacum cv. Xanthi) plants that express a human DHAR gene isolated from the human fetal liver cDNA library in the chloroplasts. We also investigated the DHAR activity, levels of ascorbate, and GSH. Two transgenic plants were successfully developed by Agrobacterium-mediated transformation and were confirmed by PCR and Southern blot analysis. DHAR activity and AsA content in mature leaves of transgenic plants were approximately 1.41 and 1.95 times higher than in the non-transgenic (NT) plants, respectively In addition, the content of oxidized glutathione (GSSG) in transgenic plants was approximately 2.95 times higher than in the NT plants. The ratios of AsA to DHA and GSSG to GSH were changed by overexpression of DHAR, as expected, even though the total content of ascorbate and glutathione was not significantly changed. When tobacco leaf discs were subjected to methyl viologen at $5\;{\mu}M$, $T_0$ transgenic plants showed about a 50% reduction in membrane damage compared to the NT plants.

  • PDF

SIRT7 Exhibits Oncogenic Potential in Human Ovarian Cancer Cells

  • Wang, Hong-Ling;Lu, Ren-Quan;Xie, Su-Hong;Zheng, Hui;Wen, Xue-Mei;Gao, Xiang;Guo, Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권8호
    • /
    • pp.3573-3577
    • /
    • 2015
  • Background: Sirtuin7 (SIRT7) is a type of nicotinamide adenine dinucleotide oxidized form (NAD+)-dependent deacetylase and the least understood member of the sirtuins family; it is implicated in various processes, such as aging, DNA damage repair and cell signaling transduction. There is some evidence that SIRT7 may function as a tumor trigger for human malignancy. Here, we aimed to explore the biological function of SIRT7 in ovarian carcinoma cells and its potential mechanism. Materials and Methods: Expression of SIRT7 in ovarian cancer cell lines was detected by western blotting. Transduced cell lines with SIRT7 knockdown or overexpression were constructed. Cell viability, cologenic, apoptosis-associated and motility assays were performed to elucidate the biological function of SIRT7 in ovarian cancer cells. Results: SIRT7 demonstrated a higher level in ovarian cancer cell lines compared with normal cells. On the one hand, down-regulation of SIRT7 significantly reduced ovarian cancer cell growth, repressed colony formation and increased cancer cell apoptosis; on the other hand, up-regulation promoted the migration of cancer cells. Additionally, repression of SIRT7 also induced change in apoptosis-related molecules and subunits of the NF-${\kappa}B$ family. Conclusions: In the present study, our data indicated that SIRT7 might play a role of oncogene in ovarian malignancy and be a potential therapeutic target.