• Title/Summary/Keyword: oxidized

Search Result 2,152, Processing Time 0.03 seconds

Oxidative Desulfurization of Marine Diesel Using Keggin Type Heteropoly Acid Catalysts (Keggin형 헤테로폴리산 촉매를 이용한 선박용 경유의 산화 탈황)

  • Oh, Hyeonwoo;Woo, Hee Chul
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.91-97
    • /
    • 2019
  • Oxidative desulfurization (ODS) has received much attention in recent years because refractory sulfur compounds such as dibenzothiophenes can be oxidized selectively to their corresponding sulfoxides and sulfones, and these products can be removed by extraction and adsorption. In this work, The oxidative desulfurization of marine diesel fuel was performed in a batch reactor with hydrogen peroxide ($H_2O_2$) in the presence of various supported heteropoly acid catalysts. The catalysts were characterized by XRD, XRF, XPS and nitrogen adsorption isotherm techniques. Based on the sulfur removal efficiency of promising silica supported heteropoly acid catalysts, the ranking of catalytic activity was: $30\;H_3PW_{12}/SiO_2$ > $30\;H_3PMo_{12}/SiO_2$ > $30\;H_4SiW_{12}/SiO_2$, which appears to be related with their intrinsic acid strength. The $30\;H_3PW_{12}/SiO_2$ catalyst showed the highest initial sulfur removal efficiency of about 66% under reaction conditions of $30^{\circ}C$, $0.025g\;mL^{-1}$ (cat./oil), 1 h reaction time. However, through the recycle test of the $H_3PW_{12}/SiO_2$ catalyst, significant deactivation was observed, which was attributed to the elution of the active component $H_3PW_{12}$. By introducing cesium cation ($Cs^+$) into the $H_3PW_{12}/SiO_2$ catalyst, the stability of the catalyst was improved with changing the solubility, and the $Cs^+$ ion exchanged catalyst could be recycled for at least five times without severe elution.

Analysis of Skin Color Pigments from Camera RGB Signal Using Skin Pigment Absorption Spectrum (피부색소 흡수 스펙트럼을 이용한 카메라 RGB 신호의 피부색 성분 분석)

  • Kim, Jeong Yeop
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-50
    • /
    • 2022
  • In this paper, a method to directly calculate the major elements of skin color such as melanin and hemoglobin from the RGB signal of the camera is proposed. The main elements of skin color typically measure spectral reflectance using specific equipment, and reconfigure the values at some wavelengths of the measured light. The values calculated by this method include such things as melanin index and erythema index, and require special equipment such as a spectral reflectance measuring device or a multi-spectral camera. It is difficult to find a direct calculation method for such component elements from a general digital camera, and a method of indirectly calculating the concentration of melanin and hemoglobin using independent component analysis has been proposed. This method targets a region of a certain RGB image, extracts characteristic vectors of melanin and hemoglobin, and calculates the concentration in a manner similar to that of Principal Component Analysis. The disadvantage of this method is that it is difficult to directly calculate the pixel unit because a group of pixels in a certain area is used as an input, and since the extracted feature vector is implemented by an optimization method, it tends to be calculated with a different value each time it is executed. The final calculation is determined in the form of an image representing the components of melanin and hemoglobin by converting it back to the RGB coordinate system without using the feature vector itself. In order to improve the disadvantages of this method, the proposed method is to calculate the component values of melanin and hemoglobin in a feature space rather than an RGB coordinate system using a feature vector, and calculate the spectral reflectance corresponding to the skin color using a general digital camera. Methods and methods of calculating detailed components constituting skin pigments such as melanin, oxidized hemoglobin, deoxidized hemoglobin, and carotenoid using spectral reflectance. The proposed method does not require special equipment such as a spectral reflectance measuring device or a multi-spectral camera, and unlike the existing method, direct calculation of the pixel unit is possible, and the same characteristics can be obtained even in repeated execution. The standard diviation of density for melanin and hemoglobin of proposed method was 15% compared to conventional and therefore gives 6 times stable.

Effect of SO2 on the Simultaneous Removal of Mercury and NOx over CuCl2-loaded V2O5-WO3/TiO2 SCR Catalysts (CuCl2가 담지된 V2O5-WO3/TiO2 SCR 촉매에 의한 수은 및 NOx 동시 제거에서 SO2의 영향)

  • Ham, Sung-Won
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.38-45
    • /
    • 2022
  • CuCl2-loaded V2O5-WO3/TiO2 catalyst showed excellent activity in the catalytic oxidation of elemental mercury to oxidized mercury even under SCR condition in the presence of NH3, which is well known to significantly inhibit the oxidation activity of elemental mercury by HCl. Moreover, it was confirmed that, when SO2 was present in the reaction gas together with HCl, excellent elemental mercury oxidation activity was maintained even though CuCl2 supported on the catalyst surface was converted to CuSO4. This is thought to be because not only HCl but also the SO4 component generated on the catalyst surface promotes the oxidation of elemental mercury. However, in the presence of SO2, the total mercury balance before and after the catalytic reaction was not matched, especially as the concentration of SO2 increased. In order to understand the cause of this, further studies are needed to investigate the effect of SO2 in the SnCl2 aqueous solution employed for mercury species analysis and the effect of sulfate ions generated on elemental mercury oxidation. It was confirmed that SO2 also promotes NOx removal activity, which is thought to be because the increase in acid sites by SO4 generated on the catalyst surface by SO2 facilitates NH3 adsorption. The composition change and structure of the components present on the catalyst surface under various reaction conditions were measured by XRD and XRF. These measurement results were presented as a rational explanation for the results that SO2 enhances the oxidation activity of elemental mercury and the NOx removal activity in this catalyst system.

A Study for Kinetics and Oxidation Reaction of Alcohols using (C10H8N2H)2Cr2O7 ((C10H8N2H)2Cr2O7를 이용한 알코올들의 산화반응과 반응속도에 관한 연구)

  • Park, Young-Cho;Kim, Soo-Jong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.927-933
    • /
    • 2022
  • We synthesized (C10H8N2H)2Cr2O7, The structure of the product was characterized with FT-IR(infrared) and elemental analysis. The oxidation of benzyl alcohol by (C10H8N2H)2Cr2O7 in organic solvents showed that the reactivity increased with the increase of the dielectric constant. The oxidation of alcohols was examined by (C10H8N2H)2Cr2O7 in DMF, acetone. As a resuit, (C10H8N2H)2Cr2O7 was found as efficicent oxidizing agent that converted benzyl alcohol, allyl alcohol, primary alcohol and secondary alcohols to the corresponding aldehydes or ketones(65%~95%). The selective oxidation of alcohols was also examined by (C10H8N2H)2Cr2O7 in DMF, acetone. (C10H8N2H)2Cr2O7 was selective oxidizing agent(15%~95%) of benzyl alcohol, allyl alcohol and primary alcohol in the presence of secondary ones. In the presence of DMF solvent with acidic catalyst such as H2SO4. (C10H8N2H)2Cr2O7 oxidized benzyl alcohol(H) and its derivatives. The Hammett reaction constant(ρ) was -0.69(308K). The observed experimental data were used to rationalize the hydride ion transfer in the rate determining step.

Simultaneous Oxidation of NO, CO, and CH4 over Mn-Cu/Al2O3 Catalyst (Mn-Cu/Al2O3 촉매 상에서 NO, CO 및 CH4 동시 산화)

  • Ji Eun Jeong;Chang-Yong Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Mn-M/Al2O3 (M = Cu, Fe, Co, and Ce) catalysts were prepared for simultaneous oxidation of NO, CO, and CH4, and their oxidation activities were compared. The Mn-Cu/ Al2O3 catalyst with the best simultaneous oxidation activity was characterized by XRD, Raman, XPS, and O2-TPD analysis. The result of XRD indicated that Mn and Cu existed as complex oxides in the Mn-Cu/Al2O3 catalyst. Raman and XPS results showed that electron transfer between Mn ions and Cu ions occurred during the formation of the Mn-O-Cu bond in the Mn-Cu/Al2O3 catalyst. The XPS O 1s and O2-TPD analyses showed that the Mn-Cu/Al2O3 catalyst has more adsorbed oxygen species with high mobility than the Mn/Al2O3 catalyst. The high simultaneous oxidation activity of the Mn-Cu/Al2O3 catalyst is attributed to these results. Gas-phase NO promotes the oxidation reactions of CO and CH4 in the Mn-Cu/Al2O3 catalyst while suppressing the NO oxidation reaction. These results were presumed to be because the oxidized NO was used as an oxidizing agent for CO and CH4. On the other hand, the oxidation reactions of CO and CH4 competed on the Mn-Cu/Al2O3 catalyst, but the effect was not noticeable because the catalyst activation temperature was different.

The Treatment of Night Soil using Bacillus sp. (Bacillus sp.를 이용한 분뇨처리)

  • 염혜경;이은숙;이병헌;이민규;정일호;김중균
    • Journal of Life Science
    • /
    • v.12 no.6
    • /
    • pp.700-707
    • /
    • 2002
  • To study the characteristics of organic and nutrient removal by Bacillus species at high COD concentration of influent, three lab-scale batch reactors(R1, R2, R3), each of which has different substrate composition, were operated. More than 95% of $NH_4^+$-N and $COD_{cr}$, concentrations were removed under an aerobic condition, and their removal efficiencies were found to be 22.6 and 90.5%(R1), 23.9 and 65.8%(R2), 30.2 and 86.4%(R3), respectively. The removal efficiency of $NH_4^+$-N was high when an enough amount of $NO_3^{-}$-N was supplied, and that of $COD_{cr}$. was low when a high concentration of initial $NO_2^{-}$-N was added. The amount of carbon utilized in denitrification was a little. In all reactors,$NO_3^{-}$-N was removed under an anoxic condition, but in the R3 reactor, 10% of $NO_3^{-}$-N could be removed even undo, an aerobic condition. The removal efficiencies of TN and TP were 41.8 and 49.5%(R1), 40.1 and 35.8%(R2), 47.0 and 57.6%(R3), respectively. Alkalinities destructed under an aerobic condition for each reactor were 4.96, 5.41 and 3.93 mg/L (as $CaCO_3$) per each gram of $NH_4^+$-N oxidized, respectively, while 3.06, 3.17 and 2.60 mg/L (as $CaCO_3$) of alkalinities were produced for each gram of ,$NO_3^{-}$-N reduced to $N_2$. The SOUR were found to be 38.5, 52.7 and 42.0 mg $O_2$/g MLSS/hr, which indicated that Bacillus sp. had a higher cell activity than activated sludge. The OLR and sludge production were estimated to be 0.69 and 0.28(Rl), 0.77 and 0.20(R2), 0.61 kg COD/$m^3$/day and 0.25 kg MLSS/kg COD(R3), respectively. From the N-balance, the highest percentage(40.9%) of nitrogen lost to $N_2$ was obtained in the R3 reactor. From all the results, the possibility of aerobic denitrification Bacillus sp. has been shown and the B3 process seemed to have two advantages: a little amount of carbon was required in denitrification and not much amount of alkalinity was destructed under an aerobic condition.

Choline and Betaine Concentrations in Breast Milk of Korean Lactating Women and the Choline and Betaine Intakes of Their Infants (한국 수유부 유즙의 콜린과 베타인 농도 및 영아의 콜린과 베타인 섭취량)

  • Jeong, Han-Ok;Suh, Yoon-Suk;Chung, Young-Jin
    • Journal of Nutrition and Health
    • /
    • v.43 no.6
    • /
    • pp.588-596
    • /
    • 2010
  • Most nutrients taken by pregnant women are secreted into their breast milk. Food contains choline together with betaine, and in human body choline is oxidized to betaine which transfer methyl group. The aim of the study was to estimate the concentrations of choline and betaine in breast milk of Korean lactating women and the choline and betaine intakes of their infants. Total choline, free choline and betaine concentrations in breast milk of some lactating women living in Daejon Metropolitan city were analyzed every month by using HPLC-MS and enzymatic method during the first five months. Total choline concentrations of breast milks were 157.64 mg/L (1.52 mmol/L), 157.83 mg/L (1.52 mmol/L), 165.99 mg/L (1.60 mmol/L), 153.67 mg/L (1.48 mmol/L), 145.05 mg/L (1.39 mmol/L) by month after delivery for five months. The concentrations of total choline and free choline in breast milks were not significantly changed for the five months while the betaine concentrations gradually decreased. Daily intake of total choline of the infants appears to be adequate for the infant's requirement according to the US DRI; 124.6 mg/d, 120.9 mg/d, 126.5 mg/d 104.1 mg/d from 2nd to 5th month after birth. Free choline and betaine intakes of the infants were not significantly changed during the four months except showing decrease in betaine intake per kg body weight. Choline intakes of the infants more correlated with choline concentrations of the breast milks (r = 0.982, p = 0.000) than intake amount of the breast milk (r = 0.414, p = 0.028). These results suggest that the choline intake of Korean breast-fed infants appears to be adequate and the intake could be affected by the choline concentration of the breast milk.

Effects of NG-monomethyl-L-arginine and L-arginine on cerebral hemodynamics and energy metabolism during reoxygenation-reperfusion after cerebral hypoxia-ischemia in newborn piglets (급성 저산소성 허혈성 뇌손상이 유발된 신생자돈에서 재산소-재관류기 동안 NG-monomethyl-L-arginine과 L-arginine이 뇌의 혈역학 및 에너지 대사에 미치는 영향)

  • Ko, Sun Young;Kang, Saem;Chang, Yun Sil;Park, Eun Ae;Park, Won Soon
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.3
    • /
    • pp.317-325
    • /
    • 2006
  • Purpose : This study was carried out to elucidate the effects of nitric oxide synthase(NOS) inhibitor, NG-monomethyl-L-arginine(L-NMMA) and nitric oxide precursor, L-arginine(L-Arg) on cerebral hemodynamics and energy metabolism during reoxygenation-reperfusion(RR) after hypoxia-ischemia(HI) in newborn piglets. Methods : Twenty-eight newborn piglets were divided into 4 groups; Sham normal control(NC), experimental control(EC), L-NMMA(HI & RR with L-NMMA), and L-Arg(HI & RR with L-Arg) groups. HI was induced by occlusion of bilateral common carotid arteries and simultaneously breathing with 8 percent oxygen for 30 mins, and followed RR by release of carotid occlusion and normoxic ventilation for one hour. All groups were monitored with cerebral hemodynamics and cytochrome $aa_3$ (Cyt $aa_3$) using near infrared spectroscopy(NIRS). $Na^+$, $K^+$-ATPase activity, lipid peroxidation products, and tissue high energy phosphate levels were determined biochemically in the cerebral cortex. Results : In experimental groups, mean arterial blood pressure, $PaO_2$, and pH decreased, and base excess and blood lactate level increased after HI compared to NC group(P<0.05). These variables subsequently returned to baseline after RR except pH. There were no differences among the experimental groups. In NIRS, oxidized hemoglobin($HbO_2$) decreased and hemoglobin(Hb) increased during HI(P<0.05) but returned to base line immediately after RR; 40 min after RR, the $HbO_2$ had decreased significantly compared to NC group(P<0.05). Changes of Cyt $aa_3$ decreased significantly compared to NC after HI and recovered at the end of the experiment. Significantly reduced cerebral cortical cell membrane $Na^+$, $K^+$-ATPase activity and increased lipid peroxidation products(P<0.05) were not improved with L-NMMA or L-Arg. Conclusion : These findings suggest that NO is not involved in the mechanism of HI and RR brain damage during the early acute phase of RR.

Comparison of Naphthalene Degradation Efficiency and OH Radical Production by the Change of Frequency and Reaction Conditions of Ultrasound (초음파 주파수 및 반응조건 변화에 따른 나프탈렌 분해효율과 OH 라디칼의 발생량 비교)

  • Park, Jong-Sung;Park, So-Young;Oh, Je-Ill;Jeong, Sang-Jo;Lee, Min-Ju;Her, Nam-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.79-89
    • /
    • 2009
  • Naphthalene is a volatile, hydrophobic, and possibly carcinogenic compound that is known to have a severe detrimental effect to aquatic ecosystem. Our research examined the effects of various operating conditions (temperature, pH, initial concentration, and frequency and type of ultrasound) on the sonochemical degradation of naphthalene and OH radical production. The MDL (Method detection limit) determined by LC/FLD (1200 series, Agilient) using C-18 reversed column is measured up to 0.01 ppm. Naphthalene vapor produced from ultrasound irradiation was detected under 0.05 ppm. Comparison of naphthalene sonodegradion efficiency tested under open and closed reactor cover fell within less than 1% of difference. Increasing the reaction temperature from $15^{\circ}C$ to $40^{\circ}C$ resulted in reduction of naphthalene degradation efficiency ($15^{\circ}C$: 95% ${\rightarrow}$ $40^{\circ}C$: 85%), and altering pH from 12 to 3 increased the effect (pH 12: 84% ${\rightarrow}$pH 3: 95.6%). Pseudo first-order constants ($k_1$) of sonodegradation of naphthalene decreased as initial concentration of naphthalene increased (2.5 ppm: $27.3{\times}10^{-3}\;min^{-3}\;{\rightarrow}$ 10 ppm : $19.3{\times}10^{-3}\;min^{-3}$). Degradation efficiency of 2.5 ppm of naphthalene subjected to 28 kHz of ultrasonic irradiation was found to be 1.46 times as much as when exposed under 132 kHz (132 kHz: 56%, 28 kHz: 82.7%). Additionally, its $k_1$ constant was increased by 2.3 times (132 kHz: $2.4{\times}10^{-3}\;min^{-1}$, 28 kHz: $5.0{\times}10^{-3}\;min^{-1}$). $H_2O_2$ concentration measured 10 minutes after the exposure to 132 kHz of ultrasound, when compared with the measurement under frequency of 28 kHz, was 7.2 times as much. The concentration measured after 90 minutes, however, showed the difference of only 10%. (concentration of $H_2O_2$ under 28 kHz being 1.1 times greater than that under 132 kHz.) The $H_2O_2$ concentration resulting from 2.5 ppm naphthalene after 90 minutes of sonication at 24 kHz and 132 kHz were lower by 0.05 and 0.1 ppm, respectively, than the concentration measured from the irradiated M.Q. water (no naphthalene added.) Degradation efficiency of horn type (24 kHz) and bath type (28 kHz) ultrasound was found to be 87% and 82.7%, respectively, and $k_1$ was calculated into $22.8{\times}10^{-3}\;min^{-1}$ and $18.7{\times}10^{-3}\;min^{-1}$ respectively. Using the multi- frequency and mixed type of ultrasound system (28 kHz bath type + 24 kHz horn type) simultaneously resulted in combined efficiency of 88.1%, while $H_2O_2$ concentration increased 3.5 times (28 kHz + 24 kHz: 2.37 ppm, 24 kHz: 0.7 ppm.) Therefore, the multi-frequency and mixed type of ultrasound system procedure might be most effectively used for removing the substances that are easily oxidized by the OH radical.

Chemical Composition of Korean Geoduck and Changes in Their Composition during Frozen Storage (코끼리조개의 성분 조성과 냉동 저장 중의 성분 변화)

  • Choi, Hung-Gil
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.3 no.2
    • /
    • pp.47-72
    • /
    • 1991
  • To obtain the principal data for useful treatment and processing of Korean geoduck (Panope japonica A. ADAMS) which inhabit mostly at Dong-Hae coastal area in Korea, changes of $NH_2$-N, TMAO, TMA, total creatinine, protein composition and fatty acid composition in raw and blanched geoduck muscle during storage at $-20^{\circ}C$ were investigated. In addition, its chemical composition variation in the whole year was elucidated. The moisture content in geoduck muscle meat was 78.1% to 82% in the whole year. Particularly, in July its moisture content was maximum as 82% and in September minimum as 78.1%. Crude protein was in the range of 12.3-16.4%, crude lipid the average was 1.5%, crude ash on the average was 1.4%. The abundant fatty acids in geoduck muscle oil were $C_{16}$ : 0, $C_{16}$ : 1, $C_{18}$ : 0, $C_{18}$ : 1, $C_{20}$ : 5, and $C_{22}$ : 6 acids. During storage at $-20^{\circ}C$, content of unsaturated fatty acid such as eicosapentaenoic acid (EPA, $C_{20}$ : 5) and docosahexaenoic acid (DHA, $C_{22}$ : 6)in raw geoduck muscle decreased somewhat and the raw geoduck was slightly oxidized. Trimethylamine (TMA), volatile basic nitrogen (VBN)and $NH_2$-N of raw muscle increased compared to blanched muscle. Trimethylamine oxide (TMAO) was slightly decreased during the storage period. The muscle protein was approximately composed of 37% sarcoplasmic, 29% myofibrillar, 22% alkali soluble, and 12% stroma protein. Among several proteins, myofibrillar protein content decreased mostly, while the alkali-soluble and stroma protein content increased slightly during storage at $-20^{\circ}C$.

  • PDF