• Title/Summary/Keyword: oxidized

Search Result 2,157, Processing Time 0.03 seconds

Role of Ascorbic Acid in the Depolymerization of Hyaluronic Acid by $Fe^{++}$ and $H_2O_2$ ($Fe^{++}$$H_2O_2$에 의한 hyaluronic acid 분해에 있어서 ascorbic acid의 역할)

  • Lee, Jung-Soo;Chung, Myung-Hee;Lim, Jung-Kyoo;Park, Chan-Woong;Cha, In-Joon
    • The Korean Journal of Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.62-77
    • /
    • 1985
  • In tile Iron-catalyzed Haber-Weiss reaction to produce OH., the requirement for $O^{-}_{2}{\cdot}$ is only to reduce $Fe^{+++}$. Possibly, the role of $O^{-}_{2}{\cdot}$ can be replaced by other reducing agents. Ascorbate is one of them in biological system. In the present study, the ability of ascorbate to produce $OH{\cdot}$ in the presence of $Fe^{++}$ and $H_2O_2$ was investigated by observing the degradation of hyaluronic acid and ethylene production from methional. Ascorbate stimulated the degradation of hyaluronic by $Fe^{++}$ and $H_2O_2$. That was confirmed by both viscosity change and gel-permeation chromatographic analysis. The observed degradation was almost completely prevented by catalase and $OH{\cdot}$ scavengers. In support of the above results, ascorbate enhanced the prouction of ethylene from methional in the presence of $Fe^{++}$ and $H_2O_2$. Other reducing agents (cysteine, glutathione, NADH and NADPH) showed similar activities to ascorbate in the degradation of hyaluronic acid and ethylene production. But no stimulatory effects were observed with their oxidized forms such as NAD and NADP. Thus, it appears that reduction of the metal ion was needed for $OH{\cdot}$ production. Among the metal ions tested, $Fe^{++}$ showed most potent catalytic action in the production of $OH{\cdot}$ The results obtained support that ascorbate can substitute $O^{-}_{2}{\cdot}$ in the metal-catalyzed reactions, particularly with $Fe^{++}$ by which $OH{\cdot}$ is produced with $H_2O_2$. The significance of the ascorbate-dependent production of $OH{\cdot}$ was considered with respect to possible role of ascorbate in the damage of inflamed joints.

  • PDF

Kinetics and Mechanism of the Oxidation of Alcohols by C9H7NHCrO3Cl (C9H7NHCrO3Cl에 의한 알코올류의 산화반응에서 속도론과 메카니즘)

  • Park, Young-Cho;Kim, Young-Sik;Kim, Soo-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.378-384
    • /
    • 2018
  • $C_9H_7NHCrO_3Cl$ was synthesized by reacting $C_9H_7NH$ with chromium (VI) trioxide. The structure of the product was characterized by FT-IR (Fourier transform infrared) spectroscopy and elemental analysis. The oxidation of benzyl alcohol by $C_9H_7NHCrO_3Cl$ in various solvents showed that the reactivity increased with increasing dielectric constant(${\varepsilon}$) in the following order: DMF (N,N'-dimethylformamide) > acetone > chloroform > cyclohexane. The oxidation of alcohols was examined by $C_9H_7NHCrO_3Cl$ in DMF. As a result, $C_9H_7NHCrO_3Cl$ was found to be an efficient oxidizing agent that converts benzyl alcohol, allyl alcohol, primary alcohols, and secondary alcohols to the corresponding aldehydes or ketones (75%-95%). The selective oxidation of alcohols was also examined by $C_9H_7NHCrO_3Cl$ in DMF. $C_9H_7NHCrO_3Cl$ was the selective oxidizing agent of benzyl, allyl and primary alcohol in the presence of secondary ones. In the presence of DMF with an acidic catalyst, such as $H_2SO_4$, $C_9H_7NHCrO_3Cl$ oxidized benzyl alcohol (H) and its derivatives ($p-OCH_3$, $m-CH_3$, $m-OCH_3$, m-Cl, and $m-NO_2$). Electron donating substituents accelerated the reaction rate, whereas electron acceptor groups retarded the reaction rate. The Hammett reaction constant (${\rho}$) was -0.69 (308K). The observed experimental data were used to rationalize hydride ion transfer in the rate-determining step.

Characteristics of Methanol Production Derived from Methane Oxidation by Inhibiting Methanol Dehydrogenase (메탄올탈수소효소 저해시 메탄산화에 의한 메탄올 전환생성 특성)

  • Yoo, Yeon-Sun;Han, Ji-Sun;Ahn, Chang-Min;Min, Dong-Hee;Mo, Woo-Jong;Yoon, Soon-Uk;Lee, Jong-Gyu;Lee, Jong-Yeon;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.662-669
    • /
    • 2011
  • This study was conducted to biologically convert methane into methanol. Methane contained in biogas was bio-catalytically oxidized by methane monooxygenase (MMO) of methanotrophs, while methanol conversion was observed by inhibiting methanol dehydrogenase (MDH) using MDH activity inhibitors such as phosphate, NaCl, $NH_4Cl$, and EDTA. The degree of methane oxidation by methanotrophs was the most highly accomplished as 0.56 mmol for the condition at $35^{\circ}C$ and pH 7 under 0.4 (v/v%) of biogas ($CH_4$ 50%, $CO_2$ 50%) / Air ratio. By the inhibition of 40 mM of phosphate, 50 mM of NaCl, 40 mM of $NH_4Cl$ and $150{\mu}m$ of EDTA, methane oxidation rate could achieve more than 80% regardless of type of inhibitors. In the meantime, addition of 40 mM of phosphate, 100 mM of NaCl, 40 mM of $NH_4Cl$ and $50{\mu}m$ of EDTA each led to generating the highest amount of methanol, i.e, 0.71, 0.60, 0.66, and 0.66 mmol when 1.3, 0.67, 0.74, and 1.3 mmol of methane was each concurrently consumed. At that time, methanol conversion rate was 54.7, 89.9, 89.6, and 47.8% respectively, and maximum methanol production rate was $7.4{\mu}mol/mg{\cdot}h$. From this, it was decided that the methanol production could be maximized as 89.9% when MDH activity was specifically inhibited into the typical level of 35% for the inhibitor of concern.

Evaluation of $^{14}C$ Behavior Characteristic in Reactor Coolant from Korean PWR NPP's (국내 경수로형 원자로 냉각재 중의 $^{14}C$ 거동 특성 평가)

  • Kang, Duk-Won;Yang, Yang-Hee;Park, Kyong-Rok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • This study has been focused on determining the chemical composition of $^{14}C$ - in terms of both organic and inorganic $^{14}C$ contents - in reactor coolant from 3 different PWR's reactor type. The purpose was to evaluate the characteristic of $^{14}C$ that can serve as a basis for reliable estimation of the environmental release at domestic PWR sites. $^{14}C$ is the most important nuclide in the inventory, since it contributes one of the main dose contributors in future release scenarios. The reason for this is its high mobility in the environment, biological availability and long half-life(5730yr). More recent studies - where a more detailed investigation of organic $^{14}C$ species believed to be formed in the coolant under reducing conditions have been made - show that the organic compounds not only are limited to hydrocarbons and CO. Possible organic compounds formed including formaldehyde, formic acid and acetic acid, etc. Under oxidizing conditions shows the oxidized carbon forms, possibly mainly carbon dioxide and bicarbonate forms. Measurements of organic and inorganic $^{14}C$ in various water systems were also performed. The $^{14}C$ inventory in the reactor water was found to be 3.1 GBq/kg in PWR of which less than 10% was in inorganic form. Generally, the $^{14}C$ activity in the water was divided equally between the gas- and water- phase. Even though organic $^{14}C$ compound shows that dominant species during the reactor operation, But during the releasing of $^{14}C$ from the plant stack, chemical forms of $^{14}C$ shows the different composition due to the operation conditions such as temperature, pH, volume control tank venting and shut down chemistry.

  • PDF

Effect of Dietary Fish Oil on Lipid Peroxidation in Rats Liver and Brain During Postnatal Development (어유섭취가 출생후 발달과정의 흰 쥐의 간과 뇌조직의 지질과산화와 그 관련기능에 미치는 영향)

  • 박명희
    • Journal of Nutrition and Health
    • /
    • v.20 no.2
    • /
    • pp.111-121
    • /
    • 1987
  • Lipie peroxide formation, antiperoxidative s system and body adaptability for handling lipid p peroxide were examined in the first and second g generations of rats fed fish oil. Mackerel oil(MO) was used and four other dietary oils and fat, i.e. soybean oil(SO), perilla oil(PO), rapeseed oil(RO) and beef tallow(BT) were also employed to compare the effect of fish oil. Synthetic diets containing these five dietary fats at the level of 1O%(w/w), were given to the correspond­m ing groups of male and female rats weighing about 70 grams. After 34 days of feeding, male a and female rats were mated and their offsprings were raised throughout suckling (17, 26 days) and weanling (39 days) periods. Liver lipid pero­x xide level was highest in MO group of both first (mother rats after lactation) and second genera­t tions of 17 and 26 days old, but not of 39 days old. During suckling period, liver lipid peroxide level was well matched to total unsaturation of dietary fat. Brain lipid peroxide levels were not different among five groups. Liver $alpha$-tocopherol a and reduced glutathione (GSH) levels were lowest in MO fed first generation. In second generation, $alpha$-tocopherol level was also low in MO group, although the effect was less pronoun­c ced, but GSH level was not different from other groups. Oxidized glutathione (GSSG) level did not consistently vary by change in dietary fat. Glutathione peroxidase activity increased as young rats grew up to 39 days. Superoxide d dismutase activity change was insignificant by a age, but was shown as lowest in MO group. At the age of 26 and 39 days, liver glutatione peroxidase activity was increased as was level of lipid peroxide, suggesting that this is the one of the mechanisms responsible for body adapta­b bility for protection against the accumulation of lipid peroxide.

  • PDF

ATHEROSCLEROSIS, CHOLESTEROL AND EGG - REVIEW -

  • Paik, I.K.;Blair, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.1
    • /
    • pp.1-25
    • /
    • 1996
  • The pathogenesis of atherosclerosis can not be summarized as a single process. Lipid infiltration hypothesis and endothelial injury hypothesis have been proposed and investigated. Recent developments show that there are many points of potential interactions between them and that they can actually be regarded as two phases of a single, unifying hypothesis. Among the many risk factors of atherosclerosis, plasma homocysteine and lipoprotein(a) draw a considerable interest because they are independent indicators of atherogenicity. Triglyceride (TG)-rich lipoproteins (chylomicron and VLDL) are not considered to be atherogenic but they are related to the metabolism of HDL cholesterol and indirectly related to coronary heart disease (CHD). LDL can of itself be atherogenic but the oxidative products of this lipoprotein are more detrimental. HDL cholesterol has been considered to be a favorable cholesterol. The so-called 'causalist view' claims that HDL traps excess cholesterol from cellular membranes and transfers it to TG-rich lipoproteins that are subsequently removed by hepatic receptors. In the so-called 'noncausalist view', HDL does not interfere directly with cholesterol deposition in the arterial wall but instead reflects he metabolism of TG-rich lipoproteins and their conversion to atherogenic remnants. Approximately 70-80% of the human population shows an effective feedback control mechanism in cholesterol homeostasis. Type of dietary fat has a significant effect on the lipoprotein cholesterol metabolism and atherosclerosis. Generally, saturated fatty acids elevate and PUFA lower serum cholesterol, whereas MUFA have no specific effect. EPA and DHA inhibit the synthesis of TG, VLDL and LDL, and may have favourable effects on some of the risk factors. Phospholipids, particularly lecithin, have an antiatherosclerotic effect. Essential phospholipids (EPL) may enhance the formation of polyunsaturated cholesteryl ester (CE) which is less sclerotic and more easily dispersed via enhanced hydrolysis of CE in the arterial wall. Also, neutral fecal steroid elimination may be enhanced and cholesterol absorption reduced following EPL treatment. Antioxidants protect lipoproteins from oxidation, and cells from the injury of toxic, oxidized LDL. The rationale for lowering of serum cholesterol is the strong association between elevation of plasma or serum cholesterol and CHD. Cholesterol-lowing, especially LDL cholesterol, to the target level could be achieved using diet and combination of drug therapy. Information on the link between cholesterol and CHD has decreased egg consumption by 16-25%. Some clinical studies have indicated that dietary cholesterol and egg have a significant hypercholesterolemic effect, while others have indicated no effect. These studies differed in the use of purified cholesterol or cholesterol in eggs, in the range of baseline and challenge cholesterol levels, in the quality and quantity of concomitant dietary fat, in the study population demographics and initial serum cholesterol levels, and clinical settings. Cholesterol content of eggs varies to a certain extent depending on the age, breed and diet of hens. However, egg yolk cholesterol level is very resistant to change because of the particular mechanism involved in yolk formation. Egg yolk contains a factor of factors responsible for accelerated cholesterol metabolism and excretion compared with crystalline cholesterol. One of these factors could be egg lecithin. Egg lecithin may not be as effective as soybean lecithin in lowering serum cholesterol level due probably to the differences of fatty acid composition. However, egg lecithin may have positive effects in hypercholesterolemia by increasing serum HDL level and excretion of fecal cholesterol. The association of serum cholesterol with egg consumption has been widely studied. When the basal or control diet contained little or no cholesterol, consumption of 1 or 2 eggs daily increased the concentration of plasma cholesterol, whereas that of the normolipemic persons on a normal diet was not significantly influenced by consuming 2 to 3 eggs daily. At higher levels of egg consumption, the concentration of HDL tends to increase as well as LDL. There exist hyper-and hypo-responders to dietary (egg) cholesterol. Identifying individuals in both categories would be useful from the point of view of nutrition guidelines. Dietary modification of fatty acid composition has been pursued as a viable method of modifying fat composition of eggs and adding value to eggs. In many cases beneficial effects of PUFA enriched eggs have been demonstrated. Generally, consumption of n-3 fatty acids enriched eggs lowered the concentration of plasma TG and total cholesterol compared to the consumption of regular eggs. Due to the highly oxidative nature of PUFA, stability of this fat is essential. The implication of hepatic lipid accumulation which was observed in hens fed on fish oils should be explored. Nutritional manipulations, such as supplementation with iodine, inhibitors of cholesterol biosynthesis, garlic products, amino acids and high fibre ingredients, have met a limited success in lowering egg cholesterol.

Oxidative Pathway of $C^{14}-glucose$ in Various Human Cancer Tissues (각종 인체 암조직의 당의 산화경로 분석)

  • Lee, Bong-Kee;Lee, Sang-Don
    • The Korean Journal of Physiology
    • /
    • v.2 no.1
    • /
    • pp.23-30
    • /
    • 1968
  • Tissue homogenates of 12 kinds of human cancer tissues were incubated separately in medium containing $C^{14}-1-glucose$ and $C^{14}-6-glucose$ as a substrate in order to observe the oxidative pathway of glucose in the tumor tissues. At the end of 3 hours incubation in the Dubnuff metabolic shaking incubator, respiratory $CO_2$ samples trapped by alkaling which was placed in the center well of incubation flask were analysed for total $CO_2$ production rates and their radioactivities. The tissue homogenate samples after incubation were analyzed for their concentrations of glucose, lactate and pyruvate. Calculations were made on the glucose consumption rate and accumulation rates of lactate and pyruvate. Fractionation of oxidative pathway of glucose was carried out by calculating $C^{14}O_2 yields from C-1 and C-6 carbon of glucose. The following results were obtained. 1. In 12 kinds of human cancer, total $CO_2$ production rates were less than $8{\mu}M/gm$ except 2 cases. These lower values impressed that oxidative metabolism in the tumor tissues generally inhibited as compared with that in normal tissues. On the other hand, fractions of $CO_2$ derived from glucose to total $CO_2$ production rates (RSA) were less than 10% in every case. These facts showed that oxidation of glucose into $CO_2$ was remarkably inhibited in the tumor tissues. 2. Factions of glucose disappeared into $CO_2\;(RGD_{CO_2})$, lactate $(RGD_L)$, pyruvate $(RGD_P)$ to glucose consumption rates were as follows. $RGD_{CO_2}$ were less than 2% in cases of in this experiment and $RGD_L$ showed more than 5% except in 2 cases. These facts showed that anaerobic degradation of glucose into 3 carbon compounds was easily proceeded but further degradation into $CO_2$ via the TCA cycle was greatly inhibited resulting in accumulation of lactate. There are large variation in values of $RGD_P$ in different kinds of tumor tissue but relatively higher values in $RGD_{CO_2}$ were obtained in the tumor tissues as compared with those of normal tissues. 3. The oxidative pathway of glucose in tumor tissues were analyzed from the values of RSA which were obtained in $C^{14}-1\;and\;C^{14}-6-glucose$ incubation experiments. It was found that 3% of $CO_2$ derived from glucose were oxidized via the principal EMP-TCA cycle and the remainder were via alternate pathway such as HMP in the liver cancer and values in other cancer tissues were as follows; 4% in the tongue cancer, 6% in the colon cancer, 6% in the lung cancer, 9% in the stomach cancer, 11% in the ovarian cancer, 12% in the neck tumor, 22% in the uterine cancer, 22% in the bladder tumor, 32% in the spindle cell sarcoma and 65% in the brain tumor. These values except later 2 cases showed less than 30% which is the lowest value among the normal tissues. Even in the brain tumor in which showed highest value in the tumor group. It is reasonable to suppose that this fraction was remarkably decreased because values in normal brain tissue was more than 90%. From the above data, it was concluded that in tumor tissues, oxidation of glucose via TCA cycle was greatly inhibited but correlation between degree of inhibited oxidation of glucose via TCA cycle and malignancy of tumor were not clarified in this experiments.

  • PDF

Innovative Technology of Landfill Stabilization Combining Leachate Recirculation with Shortcut Biological Nitrogen Removal Technology (침출수 재순환과 생물학적 단축질소제거공정을 병합한 매립지 조기안정화 기술 연구)

  • Shin, Eon-Bin;Chung, Jin-Wook;Bae, Woo-Keun;Kim, Seung-Jin;Baek, Seung-Cheon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1035-1043
    • /
    • 2007
  • A leachate containing an elevated concentration of organic and inorganic compounds has the potential to contaminate adjacent soils and groundwater as well as downgradient areas of the watershed. Moreover high-strength ammonium concentrations in leachate can be toxic to aquatic ecological systems as well as consuming dissolved oxygen, due to ammonium oxidation, and thereby causing eutrophication of the watershed. In response to these concerns landfill stabilization and leachate treatment are required to reduce contaminant loading sand minimize effects on the environment. Compared with other treatment technologies, leachate recirculation technology is most effective for the pre-treatment of leachate and the acceleration of waste stabilization processes in a landfill. However, leachate recirculation that accelerates the decomposition of readily degradable organic matter might also be generating high-strength ammonium in the leachate. Since most landfill leachate having high concentrations of nitrogen also contain insufficient quantities of the organic carbon required for complete denitrification, we combined a shortcut biological nitrogen removal (SBNR) technology in order to solve the problem associated with the inability to denitrify the oxidized ammonium due to the lack of carbon sources. The accumulation of nitrite was successfully achieved at a 0.8 ratio of $NO_2^{-}-N/NO_x-N$ in an on-site reactor of the sequencing batch reactor (SBR) type that had operated for six hours in an aeration phase. The $NO_x$-N ratio in leachate produced following SBR treatment was reduced in the landfill and the denitrification mechanism is implied sulfur-based autotrophic denitrification and/or heterotrophic denitrification. The combined leachate recirculation with SBNR proved an effective technology for landfill stabilization and nitrogen removal in leachate.

Rates and Pathways of Anaerobic Mineralization of Organic Matter at Highly Stagnant Freshwater Wetland and Its Comparison to Frequently Flushed Coastal Wetland (정체된 시화 인공습지와 해수유통이 활발한 강화 갯벌에서의 혐기성 유기물 분해능 및 분해경로 비교)

  • Kim, Sung-Han;Mok, Jin Sook;Jeong, Jeong Ho;Chang, Yoon Young;Choi, Kwang Soon;Hyun, Jung-Ho
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 2007
  • The objectives of this study are: (1) to compare the rates and pathways of organic matter minerlaization at stagnant freshwater wetland in Shiwha to highly irrigated coastal wetland in Ganghwa; and (2) to discuss the significance of irrigation into the sediment in controlling the organic carbon oxidation in Shiwha wetland. Concentrations of $CO_2$, $NH_4{^+}$ and $H_2S$ in the pore water of the Shiwha wetland were 3 times, 30 times, and 3 times higher than that in the pore water of the Ganghwa wetland, respectively. The ratio of Fe(III) to total reduced sulfur at the Ganghwa wetland was 12 times higher than at the Shiwha wetland. The results indicated that the Ganghwa wetland with frequent tidal inundation were relatively oxidized than highly stagnant Shiwha wetland. Rates of organic matter oxidation at the Ganghwa wetland ($0.039mM\;C\;h{-1}$) was 390 times higher than that at the Shiwha wetland ($0.0001mM\;C\;h{-1}$). Rates of sulfate reduction at the Shiwha wetland ($314{\sim}580nmol\;cm^{-3}\;d{-1}$) were comparable to the sulfate reduction at Ganghwa wetland ($2{\sim}769nmol\;cm^{-3}\; d{-1}$), whereas Fe(III) reduction rates were 1.7 times higher at the Ganghwa wetland ($0.1368{\mu}mol\;cm^{-3}\;d{-1}$) than at the Shiwha wetland ($0.087{\mu}mol\;cm^{-3}\;d{-1}$). The results implied that the water flow system of the Shiwha wetland was too stagnant to flush out the reduced pore water from the sediment, and thus anaerobic microbial respiration was limited by the availability of electron acceptors.

  • PDF

The Photovoltaic Effect of Iodine-Doped Metal Free Phthalocyanine/ZnO System (Ⅰ) (요오드가 도핑된 무금속 프탈로시아닌/산화아연계의 광기전력 효과(Ⅰ))

  • Heur, Soun-Ok;Kim, Young-Soon;Park, Yoon-Chang
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.3
    • /
    • pp.163-175
    • /
    • 1995
  • Metal free phthalocyanine($H_2Pc$) partially doped with iodine, $H_2Pc(I)x$, has been made to improve photosensitizing efficiency of ZnO/$H_2Pc$. The content of iodine dopant level(x) for $H_2Pc(I)x$ upon $H_2Pc$ polymorphs was characterized as ${\chi}-H_2Pc(I)_{0.92}$ and ${\beta}-H_2Pc(I)_{0.96}$ by elemental analysis. Characterization of iodine-oxidized $H_2Pc$ were investigated by TGA (thermogravimetric analysis), UV-Vis, FT-IR, Raman and ESR (electron spin resonance) spectrum, and the adsorption properties of $H_2Pc(I)x$ on ZnO were characterized by means of Raman and ESR studies. TGA for $H_2Pc(I)x$ showed a complete loss of iodine at approximately 265$^{\circ}C$ and the Raman spectrum of $H_2Pc(I)x$ and ZnO/$H_2Pc(I)x$ at 514.5 nm showed characteristic $I_3^-$ patterns in the frequency region 90∼550 $cm^{-1}$. ZnO/$H_2Pc(I)x$ exhibited a very intense and narrow ESR signal at $g=2.0025{\pm}0.0005$ compared to $H_2Pc$/ZnO. Iodine doped ZnO/$H_2Pc(I)x$ showed a better photosensitivity compared to iodine undoped ZnO/$H_2Pc$. That is, the surface photovoltage of ${\chi}-H_2Pc(I)_{0.92}$/ZnO was approximately 31 times greater than that of ZnO/${\chi}-H_2Pc$ and ZnO/${\beta}-H_2Pc(I)_{0.96}$ was 5 times more efficient than ZnO/${\beta}-H_2Pc$ at 670 nm. And the dependence of photosensitizing effect upon $H_2Pc$ polymorphs was exhibited that the surface photovoltage of ZnO/${\chi}-H_2Pc(I)_{0.92}$ was approximately 5 times greater than ZnO/${\beta}-H_2Pc(I)_{0.96}$ at 670 nm. Therefore Iodine doping of H_2Pc$ resulted in increase in photoconductivity of $H_2Pc$ and photovoltaic effect of ZnO/$H_2Pc$ in the visible region.

  • PDF