• Title/Summary/Keyword: oxide thin film

Search Result 1,864, Processing Time 0.031 seconds

Applications of Ar Gas Cluster Ion Beam Sputtering to Ta2O5 thin films on SiO2/Si (100)

  • Park, Chanae;Chae, HongChol;Kang, Hee Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.119-119
    • /
    • 2015
  • Ion beam sputtering has been widely used in Secondary Ion Mass Spectrometry (SIMS), X-ray Photoelectron Spectroscopy (XPS), and Auger Electron Spectroscopy (AES) for depth profile or surface cleaning. However, mainly due to severe matrix effects such as surface composition change from its original composition and damage of the surface generated by ion beam bombardment, conventional sputtering skills using mono-atomic primary ions with energy ranging from a few hundred to a thousand volts are not sufficient for the practical surface analysis of next-generation organic/inorganic device materials characterization. Therefore, minimization of the surface matrix effects caused by the ion beam sputtering is one of the key factors in surface analysis. In this work, the electronic structure of a $Ta_2O_5$ thin film on $SiO_2/Si$ (100) after Ar Gas Cluster Ion Beam (GCIB) sputtering was investigated using X-ray photoemission spectroscopy and compared with those obtained via mono-atomic Ar ion beam sputtering. The Ar ion sputtering had a great deal of influence on the electronic structure of the oxide thin film. Ar GCIB sputtering without sample rotation also affected the electronic structure of the oxide thin film. However, Ar GCIB sputtering during sample rotation did not exhibit any significant transition of the electronic structure of the $Ta_2O_5$ thin films. Our results showed that Ar GCIB can be useful for potential applications of oxide materials with sample rotation.

  • PDF

Strain evolution in Tin Oxide thin films deposited by powder sputtering method

  • Cha, Su-Yeon;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.283.1-283.1
    • /
    • 2016
  • Tin Oxide(SnO2) has been widely investigated as a transparent conducting oxide (TCO) and can be used in optoelectronic devices such as solar cell and flat-panel displays. It would be applicable to fabricating the wide bandgap semiconductor because of its bandgap of 3.6 eV. In addition, SnO2 is commonly used as gas sensors. To fabricate high quality epitaxial SnO2 thin films, a powder sputtering method was used, in contrast to typical sputtering technique with sintered target. Single crystalline sapphire(0001) substrates were used. The samples were prepared with varying the growth parameters such as gas environment and film thickness. Then, the samples were characterized by using X-ray diffraction, scanning electron microscopy, and atomic force microscopy measurements. We found that the strain evolution of the samples was highly affected by gas environment and growth rate, resulted in the delamination under O2 environment.

  • PDF

Resistive Switching Characteristics of Hafnium Oxide Thin Films Sputtered at Room Temperature (상온에서 RF 스퍼터링 방법으로 증착한 Hafnium Oxide 박막의 저항 변화 특성)

  • Han, Yong;Cho, Kyoung-Ah;Yun, Jung-Gwon;Kim, Sang-Sig
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.710-712
    • /
    • 2011
  • In this study, we fabricate resistive switching random access memory (ReRAM) devices constructed with a Al/$HfO_2$/ITO structure on glass substrates and investigate their memory characteristics. The hafnium oxide thin film used as a resistive switching layer is sputtered at room temperature in a sputtering system with a cooling unit. The Al/$HfO_2$/ITO device exhibits bipolar resistive switching characteristics, and the ratio of the high resistance (HRS) to low resistance states (LRS) is more than 60. In addition, the resistance ratio maintains even after $10^4$ seconds.

Characterization of ZTO Thin Films Transistor Deposited by On-axis Sputtering and Facing Target Sputtering(FTS) (On-axis 스퍼터링과 FTS 공정으로 증착한 ZTO 박막트랜지스터의 특성)

  • Lee, Se-Hee;Yoon, Soon-Gil
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.676-680
    • /
    • 2016
  • We have investigated the properties of thin film transistors(TFT) fabricated using zinc tin oxide(ZTO) thin films deposited via on-axis sputtering and FTS methods. ZTO thin films deposited by FTS showed lower root-mean-square(RMS) roughness and more uniformity than those deposited via on-axis sputtering. We observed enhanced electrical properties of ZTO TFT deposited via FTS. The ZTO films were deposited at room temperature via on-axis sputtering and FTS. The as-deposited ZTO films were annealed at $400^{\circ}C$. The TFT using the ZTO films deposited via FTS process exhibited a high mobility of $12.91cm^2/V.s$, a low swing of 0.80 V/decade, $V_{th}$ of 5.78 V, and a high $I_{on/off}$ ratio of $2.52{\times}10^6$.

The Effects of the Processing Parameters on the Structure of IZO Transparent Thin Films Deposited by PLD Process (PLD를 이용한 IZO 투명전극의 결정구조에 영향을 미치는 공정인자에 대한 연구)

  • Kim, Pan-Young;Lee, Jai-Yeoul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.317-318
    • /
    • 2007
  • In this study, transparent conducting oxide indium zinc oxide (IZO) thin films were deposited by pulsed laser deposition (PLD) Process as a function of the deposition time on the glass substrates at $400^{\circ}C$. The crystal structures, electrical and optical properties of IZO films analyzed by XRD, AFM, and UV spectrometer. High quality IZO thin film with the resistivity of $9.1{\times}10^{-4}$ ohm cm and optical transmittance over 85% was obtained for sample when deposition time was 15min. Thin films with the preferred orientations along the c axis were observed as the deposition time increased.

  • PDF

Characteristics of Ambient Gas for Bi-Superconductor Thin Films Growth (Bi 초전도 박막 성장을 위한 분위기가스의 특성)

  • Lim, Jung-Kwan;Park, Yong-Pil;Jang, Kyung-Uk;Lee, Hee-Kab
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.587-588
    • /
    • 2005
  • Ozone is useful oxidizing gas for the fabrication of BSCCO thin films. In order to obtain high quality oxide BSCCO thin films, higher ozone concentration is necessary. The growth rates of the films was set in the region from 0.17 to 0.27 nm/min. MgO(100) was used as a substrate. In this paper oxidation property was evaluated relation between oxide gas pressure and inverse temperature(CuO reaction). The obtained condition was formulated by the fabrication of Cu metal thin film by co-deposition using the Ion Beam Sputtering method. Because the CuO phase peak appeared at the XRD evaluation of the CuO thin film using ozone gas, this study has succeeded in the fabrication of the CuO phase at $825^{\circ}C$.

  • PDF

The Increase of Photodiode Efficiency by using Transparent Conductive Aluminium-doped Zinc Oxide Thin Film (Aluminium-doped Zinc Oxide 투명전도막을 적용한 Photodiode의 수광효율 향상)

  • Jeong, Yun-Hwan;Jin, Hu-Jie;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.863-867
    • /
    • 2008
  • In this paper, to increase the light current efficiency of photodiode, we fabricated aluminum-doped zinc oxide(AZO) thin films by RF magnetron sputtering. AZO thin films were deposited at low temperature of 100 $^{\circ}C$ and different RF powers of 50, 100, 150 and 200 W due to selective process technology. Then the AZO thin films were annealed at 400 $^{\circ}C$ for 1 hr in vacuum ambient to increase crystalline. The lowest resistivity of 1.35 ${\times}$ $10^{-3}$ ${\Omega}cm$ and a high transmittance over 90 % were obtained under the conditions of 3 mTorr, 100 'c and 150 W. The optimized AZO thin films were deposited as anti-reflection coating on PN junction of silicon photodiode. It was confirmed by the result of $V_r-I_{ph}$ curve that the efficiency of photodiode with AZO thin film was enhanced 17 % more than commercial photodiode.

Molecular Beam Epitaxy Grouth of $\textrm{LaAlO}_3$ Thin Film by a Pulsed laser Deposition Technique (펄스레이저증착법을 이용한 $\textrm{LaAlO}_3$ 박막의 Molecular Beam Epitaxy 성장)

  • Kim, In-Seon;Heo, Nam-Hoe;Park, Yong-Gi
    • Korean Journal of Materials Research
    • /
    • v.9 no.1
    • /
    • pp.25-29
    • /
    • 1999
  • We have developed a laser molecular beam epitaxy system for the layer-by-layer growth of oxide thin films. Using this system, we could grow and control oxide thin films of LaAlO$_3$in a molecular layer epitaxy mode on the atomically flat SrTiO$_3$ substrate with a LaAlO$_3$single crystal target. Very clear RHEED oscillations were observed during to growth of a LaAlO$_3$ film for a long period under the optimized conditions of substrate temperature at $650^{\circ}C$, oxygen pressure at 1$\times$10\ulcorner torr, and an incident laser fluence of 4.6J/$\textrm{cm}^2$. The height of mono-layer-LaAlO$_3$ film grown during one period of RHEED intensity oscillation was 3.8$\AA$.

  • PDF

The Influence of Bi-Sticking Coefficient in Bi-2212 Thin Film

  • Lee, Hee-Kab;Park, Yong-Pil;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.152-156
    • /
    • 2000
  • Bi-thin films are fabricated by an ion beam sputtering, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below $730^{\circ}C$ and decreases linearly with temperature over $730^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, $Bi_2O_3$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi(2212) phase formation in the co-deposition process.

  • PDF

Method for Measuring Mechanical Behaviors of Thin Films at High Temperature (고온에서 박막의 기계적 거동 측정 방법)

  • Lim, Sang-Chai;Joo, Jae-Hwang;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.102-108
    • /
    • 2003
  • Recently, the authors have developed a new material test system fur thin film at the high temperature. It is so compact and precise with sub micron resolution that it seems to be a useful tool fur research of the oxide film growth, its mechanical behavior and failure mechanism. To this end. in this paper three methologies are described for in-situ monitoring of the displacement & strain and the temperature, the oxide thickness. These are the Laser Speckle analysis with digital image correlation technique, the two-color infra-red thermometer and the laser reflection interferometry respectively. The calibration results and some issues which should be addressed for practical application are presented.