• Title/Summary/Keyword: oxide particle

Search Result 725, Processing Time 0.023 seconds

Preparation and Electrical Conductivity of Scandia Stabilized Zirconia by using Ultrasonic Spray Pyrolysis (초음파 분무 열분해법을 이용한 스칸디아 안정화 지르니코니아의 제조와 전기 전도도)

  • Choi, Young-Hoon;Peck, Dong-Hyun;Park, Young-Chul;Lim, Kyoung-Tae;Suhr, Dong-Soo;Wackerl, J.;Markus, T.
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.690-695
    • /
    • 2007
  • Scandia stabilized zirconia (ScSZ) is adapted for electrolyte material of solid oxide fuel cell (SOFC) because of its high ionic conductivity and chemical stability. ScMnSZ1 powder having a composition of $((ZrO_2)_{0.89}(Sc_2O_3)_{0.1}(MnO_2)_{0.01})$ is synthesized by ultrasonic spray pyrolysis (USP) method. Porous ScMnSZ1 powder is obtained by using a pore forming agent. Microstructure and morphology, particle size distribution of porous powder synthesized with 3wt% pore forming agent are investigated. Sintered ScMnSZ1 sample with ground fine powder are also investigated their microstructure and electrical conductivity. The electrical conductivity of sintered ScMnSZ1 samples with ground fine powder was 0.082 S/cm, 0.127 S/cm and 0.249 S/cm at $750^{\circ}C$, $800^{\circ}C$ and $900^{\circ}C$, respectively.

Photocatalytic and Antipathogenic Effects of TiO2/CuxO (1 (TiO2/CuxO (1)

  • Cho, Sungwoo;Lee, Yong-Im;Kim, Lee-Han;Jung, Dongwoon
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.4
    • /
    • pp.483-488
    • /
    • 2013
  • Copper oxide (CuO) was synthesized from $CuCl_2$ by solution method. Anatase $TiO_2$ particle was dispersed into the solution before preparing CuO, so that $TiO_2$/CuO heterojunction was created through the nucleation of CuO onto the $TiO_2$ surface. Some amount of CuO was reduced to $Cu_2O$ by treating glucose into the solution, thereby preparing $TiO_2/Cu_xO$ complex. The obtained $TiO_2/Cu_xO$ complex showed advanced phtocatalytic activity under the sun light compared with the P-25 sample. In addition, the the $TiO_2/Cu_xO$ complex showed excellent antipathogenic effect.

Deinking process of Old Newsprint(ONP) by using Modified Cellulase with synthesized copolymer (기능성 고분자를 이용한 수식 셀룰라아제의 폐 신문용지 탈묵에 관한 연구)

  • Kim, Honghyun;Kwak, Tae-Heon;Park, Jinwon;Park, Kwinam
    • Clean Technology
    • /
    • v.10 no.4
    • /
    • pp.195-201
    • /
    • 2004
  • Cellulase was modified with copolymer with polyethylene(PE)/polypropylene(PP) oxide and maleic anhydride(MA) by maleylation reaction, and modified cellulase was applied to the reprocessing of old newsprint (ONP). Cellulase of modified cellulase enhanced the detachment of ink particles by fibrillation of fiber. The copolymer, which acted as the surfactant formed bubbles and removed the ink particles in the floatation process. Modified cellulase showed the same deinking ability without excess dosage compared with the conventional method. And, it improved the physical properties including tensile strength, brightness, and whiteness compared with the conventional deinking process. The bond between the ink and fiber got stronger as the storage time increased, and it became very difficult to remove the ink particle. But, modified cellulase increased the deinking ability by 41% compared with the conventional process at the experiment of the ONP for 1 year storage time. It removed the yellowing and increased the whiteness and brightness as well as tensile strength and internal bond strength.

  • PDF

Properties of Synthesis LSCF Cathode with pH Control using Oxalate Method (Oxalate법으로 합성한 LSCF의 pH 변화에 따른 공기극 특성)

  • Lee, Mi-Jai;Choi, Byung-Hyun;Kim, Sei-Ki;Lee, Mi-Jung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.17-18
    • /
    • 2007
  • Solid oxide fuel cells are clean, pollution-free technology for the electrochemical generation of electricity at high efficiency. Specially, the polarization resistance between electrolyte and electrode of SOFC unit cell is of importance, because it is desirable to develop SOFC operating at intermediate temperature below $800^{\circ}C$. The LSCF cathode prepared using modified oxalate method was investigated with different electrolyte. A precursor was prepared with oxalic acid, ethanol and $NH_4OH$ solution. The LSCF precursor was prepared at $80^{\circ}C$, and pH control was 2, 6, 8, 9 and 10. The precursor powder was calcined at $800^{\circ}C$, $1000^{\circ}C$ and $1200^{\circ}C$ for 4hrs. The crystal of LSCF powders show single phase at pH 2, 6, 8 and 9, and the average particle size was about $3{\mu}m$. The LSCF cathode with heat treatment at $1200^{\circ}C$ showed a plot of electric conductivity versus temperature. Unit cell prepared from the LSCF cathode, buffer layer between cathode and electrolyte and the LSGM, YSZ, ScSZ and CeSZ electrolyte. Also interface reaction between LSCF, buffer layer and electrolyte were measured by EPMA and the polarization resistance for unit cell with cycle measure using a Solatron 1260 analyzer.

  • PDF

Microstructure and CO Gas Sensing Properties of Ag-CuO-SnO2 Thin Films Prepared by Co-Evaporation and Thermal Oxidation (공증발과 열산화로 제조한 Ag-CuO-SnO2 박막에서 미세조직과 CO 가스 감지특성)

  • Ji, In-Geol;Han, Kyu-Suk;Oh, Jae-Hee;Ko, Tae-Gyung
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.4
    • /
    • pp.429-435
    • /
    • 2009
  • In this study, we investigated microstructure and the CO gas sensing properties of Ag-CuO-$SnO_2$ thin films prepared by co-evaporation and subsequently thermal oxidation at air atmosphere. The sensitivity of a Cu-Sn films, thermally oxidized at $600^{\circ}C$, is strongly affected by the amount of Cu. At Cu:7 wt%-Sn:93 wt%, the film exhibited a maximum sensitivity of ${\sim}2.3$ to CO gas of 1000 ppm at $300^{\circ}C$. In contrast, the sensitivity of a Sn-Ag film did not change significantly with the amount of Ag. An enhanced sensitivity of ${\sim}3.7$ was observed in the film with a composition of Ag:3 wt%-Cu:4 wt%-Sn:93 wt%, when thermally oxidized at $600^{\circ}C$. In addition, this thin film shows a response time of ${\sim}80$ sec and a recovery time of ${\sim}450$ sec to 1000 ppm CO gas. The results demonstrate that the CO sensitivity of the Ag-CuO-$SnO_2$ thin films may be closely associated with coexistence of $SnO_2$ and SnO phase, decrease in average particle size, and a porous microstructure. We also suggest that co-evaporation and followed by thermal oxidation is a very simple and effective method to prepare oxide gas sensor thin films.

Effect of surface treatments and universal adhesive application on the microshear bond strength of CAD/CAM materials

  • Sismanoglu, Soner;Gurcan, Aliye Tugce;Yildirim-Bilmez, Zuhal;Turunc-Oguzman, Rana;Gumustas, Burak
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.1
    • /
    • pp.22-32
    • /
    • 2020
  • PURPOSE. The aim of this study was to evaluate the microshear bond strength (µSBS) of four computer-aided design/computer-aided manufacturing (CAD/CAM) blocks repaired with composite resin using three different surface treatment protocols. MATERIALS AND METHODS. Four different CAD/CAM blocks were used in this study: (1) flexible hybrid ceramic (FHC), (2) resin nanoceramic (RNC), (c) polymer infiltrated ceramic network (PICN) and (4) feldspar ceramic (FC). All groups were further divided into four subgroups according to surface treatment: control, hydrofluoric acid etching (HF), air-borne particle abrasion with aluminum oxide (AlO), and tribochemical silica coating (TSC). After surface treatments, silane was applied to half of the specimens. Then, a silane-containing universal adhesive was applied, and specimens were repaired with a composite, Next, µSBS test was performed. Additional specimens were examined with a contact profilometer and scanning electron microscopy. The data were analyzed with ANOVA and Tukey tests. RESULTS. The findings revealed that silane application yielded higher µSBS values (P<.05). All surface treatments were showed a significant increase in µSBS values compared to the control (P<.05). For FHC and RNC, the most influential treatments were AlO and TSC (P<.05). CONCLUSION. Surface treatment is mandatory when the silane is not preferred, but the best bond strength values were obtained with the combination of surface treatment and silane application. HF provides improved bond strength when the ceramic content of material increases, whereas AlO and TSC gives improved bond strength when the composite content of material increases.

디지털 프린팅 용액 공정 소재 개발 동향

  • O, Seok-Heon;Son, Won-Il;Park, Seon-Jin;Kim, Ui-Deok;Baek, Chung-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.19.2-19.2
    • /
    • 2010
  • Printed electronics using printing process has broadened in all respects such as electrics (lighting, batteries, solar cells etc) as well as electronics (OLED, LCD, E-paper, transistor etc). Copper is considered to be a promising alternative to silver for printed electronics, due to very high conductivity at a low price. However, Copper is easily oxidized, and its oxide is non-conductive. This is the highest hurdle for making copper inks, since the heat and humidity that occurs during ink making and printing simply accelerates the oxidation process. A variety of chemical treatments including organic capping agents and metallic coating have been used to slow this oxidation. We have established synthetic conditions of copper nanoparticles (CuNPs) which are resistant to oxidation and average diameter of 20 to 50nm. Specific resistivity should be less than $4\;{\mu}{\Omega}{\cdot}cm$ when sintered at lower temperature than $250^{\circ}C$ to be able to apply to conductive patterns of FPCBs using ink-jet printing. Through this study, the parameters to control average diameter of CuNPs were found to be the introduction of additive agent, the feeding rate of reducing agent, and reaction temperature. The CuNPs with various average diameters (58, 40, 26, 20nm) could be synthesized by controlling these parameters. The dispersed solution of CuNPs with an average size of 20 nm was made with nonpolar solvent containing 3 wt% of binder, and then coated onto glass substrate. After sintering the coated substrates at $250^{\circ}C$ for 30 minutes in nitrogen atmosphere, metallic copper film resulted in a specific resistivity of $4.2\;{\mu}{\Omega}{\cdot}cm$.

  • PDF

Environmentally Friendly Preparation of Functional Nanomaterials and Their Application

  • Lee, Sun-Hyung;Teshima, Katsuya;Endo, Morinobu;Oishi, Shuji
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.5.1-5.1
    • /
    • 2010
  • One of the most important environmental problems is global warming. Global warming is caused by increase in the amounts of water vapor, methane, carbon dioxide and other gases being released into the atmosphere as a result of the burning of fossil fuels. It has thus become important to reduce fossil fuel use. Environmentally friendly preparation of functional materials has, therefore, attracted much interest for environmental problems. Furthermore, nature mimetic processes are recently been of great interest as environmentally friendly one. There have been many studies on fabrication of various functional nanocrystals. Among various nanocrystal fabrication techniques, flux growth is an environmentally friendly, very convenient process and can produce functional nanocrystals at temperatures below the melting points of the solutes. Furthermore, this technique is suitable for the synthesis of crystals having an enhedral habit. In flux growth, the constituents of the materials to be crystallized are dissolved in a suitable flux (solvent) and crystal growth occurs as the solution becomes critically supersaturated. The supersaturation is attained by cooling the solution, by evaporation of the solvent or by a transport process in which the solute is made to flow from a hotter to a cooler region. Many kinds of oxide nanocrystals have been grown in our laboratory. For example, zero- (e.g., particle), one- (e.g., whisker and tube) and two-dimensional (e.g., sheet) nanocrystals were successfully grown by flux method. Our flux-growth technique has some industrial and ecological merits because the nanocrystal fabrication temperatures are far below their melting points and because the used reagents are less harmless to human being and the environment.

  • PDF

Performance of Air Electrodes with a Surface-Polished Yttria-Stabilized Zircona Electrolyte for Thin-Film Solid Oxide Fuel Cells (박막 고체산화물 연료전지용 이트리아 안정화 지르코니아 전해질 연마표면상의 공기극 성능)

  • Lee, Yu-Gi
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.283-289
    • /
    • 2001
  • Composite cathodes of 50/50 vol% LSM- YSZ (La$_{1-x}$Sr$_{x}$MnO$_3$-yttria stabilized zirconia) were deposited onto surface- Polished YSZ electrolytes by colloidal deposition technique. The cathode characteristics were then examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD) and studied by ac impedance spectroscopy (IS). The typical impedance spectra measured for an air/LSM- YSZ/YSZ/Pt/air cell at $700^{\circ}C$ were composed of two depressed arcs. Addition of YSZ to the LSM electrode significantly enlarged the triple-phase boundaries (TPB) length inside the electrode, which led to a pronounced decrease in cathodic resistivity of LSM-YSZ composite electrodes. Polishing the electrolyte surface to eliminate the influences of surface impurities and to enlarge the TPB length can further reduce cathode resistivity. The cathodic resistivity of the LSM- YSZ electrodes was a strong function of operation temperature, composition and particle size of cathode materials, applied current, and electrolyte surface roughness.

  • PDF

Study On the Characteristics of Milled $UO_2$ Powder Prepared by Oxidation and Reduction Process (산화ㆍ환원처리된 $UO_2$ 분말의 분쇄특성 연구)

  • Lee Jae-Won;Lee Jung-Won
    • Resources Recycling
    • /
    • v.11 no.4
    • /
    • pp.3-10
    • /
    • 2002
  • The characteristics of dry and wet milled powder prepared by 1 cycle OREOX (oxidation and reduction of oxide fuels) treatment were investigated using the simulated spent fuel pellet. Sintered pellets simulating spent nuclear fuel burned in reactor were fabricated from $UO_2$ powder using as a starting material in fabrication of nuclear fuel. The 1 cycle OREOX-treated powder was prepared by only one path of oxidation md reduction of the simulated pellet. Powder having average particle size of less than 1 $\mu\textrm{m}$ could be easily obtained by dry milling, but not be achieved by wet milling. And, specific surface area of dry milled pow-der was higher than that of wet milled powder. Dry milled powder formed loose agglomerate, while wet milled powder showed the shape of irregular and angular particles. Dry milled powder provided higher green density, resulting in higher sintered density of higher than 95% TD and average grain size of larger than 8 $\mu\textrm{m}$ satisfying the standard specification of sintered pellets.