• Title/Summary/Keyword: oxidative phosphorylation

Search Result 286, Processing Time 0.024 seconds

Reduced EGFR Level in eIF2α Phosphorylation-Deficient Hepatocytes Is Responsible for Susceptibility to Oxidative Stress

  • Kim, Mi-Jeong;Choi, Woo-Gyun;Ahn, Kyung-Ju;Chae, In Gyeong;Yu, Rina;Back, Sung Hoon
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.264-275
    • /
    • 2020
  • Reactive oxygen species (ROS) play a significant role in intracellular signaling and regulation, particularly when they are maintained at physiologic levels. However, excess ROS can cause cell damage and induce cell death. We recently reported that eIF2α phosphorylation protects hepatocytes from oxidative stress and liver fibrosis induced by fructose metabolism. Here, we found that hepatocyte-specific eIF2α phosphorylation-deficient mice have significantly reduced expression of the epidermal growth factor receptor (EGFR) and altered EGFR-mediated signaling pathways. EGFR-mediated signaling pathways are important for cell proliferation, differentiation, and survival in many tissues and cell types. Therefore, we studied whether the reduced amount of EGFR is responsible for the eIF2α phosphorylation-deficient hepatocytes' vulnerability to oxidative stress. ROS such as hydrogen peroxide and superoxides induce both EGFR tyrosine phosphorylation and eIF2α phosphorylation. eIF2α phosphorylation-deficient primary hepatocytes, or EGFR knockdown cells, have decreased ROS scavenging ability compared to normal cells. Therefore, these cells are particularly susceptible to oxidative stress. However, overexpression of EGFR in these eIF2α phosphorylation-deficient primary hepatocytes increased ROS scavenging ability and alleviated ROS-mediated cell death. Therefore, we hypothesize that the reduced EGFR level in eIF2α phosphorylation-deficient hepatocytes is one of critical factors responsible for their susceptibility to oxidative stress.

Evidences for Functionally Direct Coupling between Mitochondrial Phosphocreatine Formation and Oxidative Phosphorylation (Oxidative Phosphorylation계에 의한 Phosphocreatine의 생성 기작)

  • Kim, Il-Han
    • The Journal of Natural Sciences
    • /
    • v.5 no.2
    • /
    • pp.3-11
    • /
    • 1992
  • As concentration of ADP was increased, the rate of phosphocreatine formation by respiring heart mitochondria was increased. The value of apparent Km of the phosphocreatine-forming mitochondria for ADP was estimated to be 0.0185 mM. This value was much lower than that of Km for ATP (0.31 mM) which was determined from the reaction of the soluble form of mitochondrial creatine kinase. The concentration of ATP remained constant during the respiring in the presence of ADP. The rate of accumulation of oxidative-phosphorylated ATP in the mitochondrial respiration medium was continuously monitored as a function of ADP concentration with the firefly luciferase-coupled assay. In that case, exogenous creatine did not affect the rate of accumulation of ATP, indicating that phosphocreatine-forming (i.e.,respiring) mitochondria in the presence of ADP did not use the ATP in the medium as a substrate.These results suggest that the heart mitochondrial creatine kinase bound to the inner membrane functionally tight-coupled to the oxidative phosphorylating system with respect to the respired ATP.

  • PDF

Physiological studies on cell division by the technique of synchronous culture of chlorella (I) (클로렐라의 동조배양법에 의한 세포분열의 생리학적 연구 1)

  • 이영녹;이종삼
    • Korean Journal of Microbiology
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 1969
  • Changes in the phosphorylation of Chlorella cells during the life cycle the aulotrophic and micotrophic synchronous culture were followed under the light and dark. 1. In the autotrophic culture of Chlorella the amounts of esterified phosphate compounds of the algal cell under the light increased during the growing period and decreased strikingly in the ripening period showing a peak at the $L_1$ i/-cell stage. 2. TRhe amount of total esterified phosphate compounds of the cell under the dark, however, decreased during the growing period and then kept fairly constnat during the ripening nad division periods showing the greates activity of the oxidative phosphorylation in the early growing stage. 3. It is presumed that the energy requirement of the dividing algal cell in the autotrophic culture is fulfilled prior to the nuclear division mostly by the photosynthetic phosphorylation. 4. In the mixotrophic culture, the amount of esterified phosphate compounds of the algal cells under the light increased during the growing period and decreased during the late ripening and early division periods showing a peak in the $L_2$-cell stage as in the case of the phosphorylation under the dark. 5. The phosphorylation of the fell grown in the glucose medium is more active under the dark than under the light in the stages of the growing and early ripening periods. 6. It is considered that the excess glucose in the algal cell not only promotes the oxidative phosphorylation but also inhibits the photosynthetic phosphorylation of the cell. 7. It is presumed that the energy requirement of the dividing algal cell in the glucose medium is fulfilled prior to the nuclear division by the combined action of oxidative and photosynthetic phosphorylation, mostly by the oxidative phosphorylation.

  • PDF

The First Korean case of combined oxidative phosphorylation deficiency-17 diagnosed by clinical and molecular investigation

  • Kim, Young A;Kim, Yoo-Mi;Lee, Yun-Jin;Cheon, Chong Kun
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.12
    • /
    • pp.408-412
    • /
    • 2017
  • Combined oxidative phosphorylation deficiency-17 (COXPD-17) is very rare and is caused by homozygous or compound heterozygous mutations in the ELAC2 gene on chromosome 17p12. The ELAC2 gene functions as a mitochondrial tRNA processing gene, and only 4 different pathogenic mutations have been reported in ELAC2-associated mitochondrial dysfunction involving oxidative phosphorylation. Affected patients show various clinical symptoms and prognosis, depending on the genotype. We report a novel mutation in the ELAC2 gene (c.95C>G [p.Pro32Arg], het), in an infant with COXPD-17 who presented with encephalopathy including central apnea and intractable epilepsy, and growth and developmental retardation. During hospitalization, consistently elevated serum lactic acid levels were noted, indicative of mitochondrial dysfunction. The patient suddenly died of shock of unknown cause at 5 months of age. This is the first case report of COXPD-17 in Korea and was diagnosed based on clinical characteristics and genetic analysis.

UV-responsive intracellular signaling pathways: MAPK, p53, and their crosstalk

  • Matsuda, Naoki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.229-232
    • /
    • 2002
  • There are two distinct UV-responsive signaling pathways in UV-irradiated mammalian cells, i.e., the DNA damage-dependent and -independent pathways. The former occurs in nucleus and results in growth arrest and apoptosis via post-translational modification of p53. The latter is initiated by oxidative stress and/or by damages in cell membrane or cytoplasm, which activate signaling cascade through intracellular molecules including mitogen activated protein kinases (MAPK). In normal human fibroblastic cells, all of MAPK family members, extracellular signal-related kinases (ERK), c-Jun N-terminal kinases (JNK) and p38, were rapidly phosphorylated following UV-irradiation. ERK phosphorylation was suppressed by an inhibitor of receptor tyrosine kinases (RTK). As ERK usually responds to mitogenic stimuli from RTK ligands, UV-induced ERK phosphorylation may be linked to the proliferation of survived cells. In contrast, phosphorylation of JNK and p38, as well as apoptosis, were modulated by the level of UV-generated oxidative stress Therefore, JNK and p38 may take part in oxidative stress-mediated apoptosis. Phosphorylation of p53 at Ser and Thr residues are essential for stabilization and activation of p53. Among several sites reported, we confirmed phosphorylation at Ser-15 and Ser-392 after UV-irradiation. Both of these were inhibited by a phosphoinositide 3-kinase inhibitor, presumably due to the shutdown of signals from DNA damage to p53. Phosphorylation at Ser-392 was also sensitive to an antioxidant and a p38 inhibitor, suggesting that Ser-392 of p53 is one of the possible points where DNA damage-dependent and -independent apoptic signals merge. Thus, MAPK pathway links UV-induced intracellular signals to the nuclear responses and modifies DNA damage-dependent cellular outcome, resulting in the determination of cell death.

  • PDF

HDAC4 Regulates Muscle Fiber Type-Specific Gene Expression Programs

  • Cohen, Todd J.;Choi, Moon-Chang;Kapur, Meghan;Lira, Vitor A.;Yan, Zhen;Yao, Tso-Pang
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.343-348
    • /
    • 2015
  • Fiber type-specific programs controlled by the transcription factor MEF2 dictate muscle functionality. Here, we show that HDAC4, a potent MEF2 inhibitor, is predominantly localized to the nuclei in fast/glycolytic fibers in contrast to the sarcoplasm in slow/oxidative fibers. The cytoplasmic localization is associated with HDAC4 hyper-phosphorylation in slow/oxidative-fibers. Genetic reprogramming of fast/glycolytic fibers to oxidative fibers by active CaMKII or calcineurin leads to increased HDAC4 phosphorylation, HDAC4 nuclear export, and an increase in markers associated with oxidative fibers. Indeed, HDAC4 represses the MEF2-dependent, PGC-$1{\alpha}$-mediated oxidative metabolic gene program. Thus differential phosphorylation and localization of HDAC4 contributes to establishing fiber type-specific transcriptional programs.

Regulation of Hippo-YAP AXIS and CYP450 enzymes by herbal pharmaceuticals, Ojeok-san (Human Hippo-YAP AXIS 및 CYP450에 미치는 오적산의 영향)

  • Bae, Su Jin;Yun, Un-Jung;Bak, Seon-Been;Song, Yu-Rim;Kim, Choon-Ok;Kang, Hyung Won;Kim, Young Woo
    • Herbal Formula Science
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Objectives : This study investigated the protective effect of Ojeok-san (OJS) on cellular damage induced by oxidative stress and whether it induces changes in CYP450 expression. Methods : To investigate the protective effect, we used cells stimulated by oxidative stress caused by the combination treatment of AA+iron. Changes in CYP450 expression were detected by immunoblotting analysis using Huh7 cells. Results : We observed that OJS altered the expression of CYP1A2, CYP3A4, CYP2C19, CYP2D6, and CYP2E1. OJS increased cell viability against AA+iron-induced oxidative stress and inhibited mitochondrial dysfunction. OJS increased phosphorylation of LKB1, phosphorylation of AMPK, and phosphorylation of ACC, which are related to the LKB1-AMPK pathway. In addition, phosphorylation of LATS1 and phosphorylation of YAP, which are related to the Hippo-YAP pathway, were increased. Conclusions : Our results show that OJS has 1) the ability to protect hepatocytes against oxidative stress, and 2) the potential to induce changes in CYP450.

Protein-protein interaction between caveolin-1 and SHP-2 is dependent on the N-SH2 domain of SHP-2

  • Park, Hyunju;Ahn, Keun Jae;Kang, Jihee Lee;Choi, Youn-Hee
    • BMB Reports
    • /
    • v.48 no.3
    • /
    • pp.184-189
    • /
    • 2015
  • Src homology 2-containing protein tyrosine phosphatase 2 (SHP-2) is known to protect neurons from neurodegeneration during ischemia/reperfusion injury. We recently reported that ROS-mediated oxidative stress promotes phosphorylation of endogenous SHP-2 in astrocytes and complex formation between caveolin-1 and SHP-2 in response to oxidative stress. To examine the region of SHP-2 participating in complex formation with caveolin-1, we generated three deletion mutant constructs and six point mutation constructs of SHP-2. Compared with wild-type SHP-2, binding of the N-SH2 domain deletion mutant of SHP-2 to p-caveolin-1 was reduced greatly, using flow cytometric competitive binding assays and surface plasmon resonance (SPR). Moreover, deletion of the N-SH2 domain of SHP-2 affected $H_2O_2$-mediated ERK phosphorylation and Src phosphorylation at Tyr 419 in primary astrocytes, suggesting that N-SH2 domain of SHP-2 is responsible for the binding of caveolin-1 and contributes to the regulation of Src phosphorylation and activation following ROS-induced oxidative stress in brain astrocytes.

LSD1-S112A exacerbates the pathogenesis of CSE/LPS-induced chronic obstructive pulmonary disease in mice

  • Jeong, Jiyeong;Oh, Chaeyoon;Kim, Jiwon;Yoo, Chul-Gyu;Kim, Keun Il
    • BMB Reports
    • /
    • v.54 no.10
    • /
    • pp.522-527
    • /
    • 2021
  • Lysine-specific demethylase 1 (LSD1) is an epigenetic regulator that modulates the chromatin status, contributing to gene activation or repression. The post-translational modification of LSD1 is critical for the regulation of many of its biological processes. Phosphorylation of serine 112 of LSD1 by protein kinase C alpha (PKCα) is crucial for regulating inflammation, but its physiological significance is not fully understood. This study aimed to investigate the role of Lsd1-S112A, a phosphorylation defective mutant, in the cigarette smoke extract/LPS-induced chronic obstructive pulmonary disease (COPD) model using Lsd1SA/SA mice and to explore the potential mechanism underpinning the development of COPD. We found that Lsd1SA/SA mice exhibited increased susceptibility to CSE/LPS-induced COPD, including high inflammatory cell influx into the bronchoalveolar lavage fluid and airspace enlargement. Additionally, the high gene expression associated with the inflammatory response and oxidative stress was observed in cells and mice containing Lsd1-S112A. Similar results were obtained from the mouse embryonic fibroblasts exposed to a PKCα inhibitor, Go6976. Thus, the lack of LSD1 phosphorylation exacerbates CSE/LPS-induced COPD by elevating inflammation and oxidative stress.

NecroX-5 protects mitochondrial oxidative phosphorylation capacity and preserves PGC1α expression levels during hypoxia/reoxygenation injury

  • Vu, Thi Thu;Kim, Hyoung Kyu;Le, Thanh Long;Nyamaa, Bayalagmaa;Song, In-Sung;To, Thanh Thuy;Nguyen, Quang Huy;Marquez, Jubert;Kim, Soon Ha;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.2
    • /
    • pp.201-211
    • /
    • 2016
  • Although the antioxidant and cardioprotective effects of NecroX-5 on various in vitro and in vivo models have been demonstrated, the action of this compound on the mitochondrial oxidative phosphorylation system remains unclear. Here we verify the role of NecroX-5 in protecting mitochondrial oxidative phosphorylation capacity during hypoxia-reoxygenation (HR). Necrox-5 treatment ($10{\mu}M$) and non-treatment were employed on isolated rat hearts during hypoxia/reoxygenation treatment using an ex vivo Langendorff system. Proteomic analysis was performed using liquid chromatography-mass spectrometry (LC-MS) and non-labeling peptide count protein quantification. Real-time PCR, western blot, citrate synthases and mitochondrial complex activity assays were then performed to assess heart function. Treatment with NecroX-5 during hypoxia significantly preserved electron transport chain proteins involved in oxidative phosphorylation and metabolic functions. NecroX-5 also improved mitochondrial complex I, II, and V function. Additionally, markedly higher peroxisome proliferator-activated receptor-gamma coactivator-$1{\alpha}$ ($PGC1{\alpha}$) expression levels were observed in NecroX-5-treated rat hearts. These novel results provide convincing evidence for the role of NecroX-5 in protecting mitochondrial oxidative phosphorylation capacity and in preserving $PGC1{\alpha}$ during cardiac HR injuries.