• Title/Summary/Keyword: oxidative DNA damage

Search Result 497, Processing Time 0.033 seconds

The Role of Heat Shock Protein 25 in Radiation Resistance

  • Lee Yoon-Jin;Lee Su-Jae;Bae Sangwoo;Lee Yun-Sil
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.2
    • /
    • pp.51-59
    • /
    • 2005
  • Overexpression of HSP25 delayed cell growth, increased the level of $p21^{waf}$, reduced the levels of cyclin D1, cylcin A and cdc2, and induced radioresistance in L929 cells. We demonstrated that extracellular regulated kinase (ERK) and MAP kinase/ERK kinase (MEK) expressions as well as their activation (phospho-forms) were inhibited by hsp25 overexpression. To confirm the relationship between ERK1/2 and hsp25-mediated radioresistance, ERK1 or ERK2 cDNA was transiently transfected into the hsp25 overexpressed cells and their radioresistance was examined. HSP25-mediated radioresistance was abolished by overexpression of ERK2, but not by overexpression of ERK1. Alteration of cell cycle distribution and cell cycle related protein expressions (cyclin D, cyclin A and cdc2) by hsp25 overexpression were also recovered by ERK2 cDNA transfection. Increase in Bc1-2 protein by hsp25 gene transfection was also reduced by subsequent ERK2 cDNA-transfection. In addition, HSP25 overexpression reduced reactive oxygen species (ROS) and increased expression of manganese superoxide dismutase (MnSOD) gene. Increased activation of NF-kB (IkB degradation) was also found in hsp25-overexpressed cells. Moreover, transfection of hsp25 antisense gene abrogated all the HSP25-mediated phenomena. To further elucidate the exact relationship between MnSOD induction and NF-kB activation, dominant negative $I-kB\alpha(I-kB\alpha-DN)$ construction was transfected to HSP25 overexpressed cells. $I-kB\alpha-DN$ inhibited HSP25 mediated MnSOD gene expression. In addition, HSP25 mediated radioresistance was blocked by $I-kB\alpha-DN$ transfection. Blockage of MnSOD with antisense oligonucleotides in HSP25 overexpressed cells, prevented apoptosis and returned the ERK1/2 activation to the control level. From the above results, we suggest for the first time that reduced oxidative damage by HSP25 was due to MnSOD-mediated down regulation of ERK1/2.

  • PDF

Effect of Whey Protein Isolate and Lactobacillus spp. Cell Extracts on Intracellular Antioxidative Activities in Human Prostate Epitherial Cells (유청단백질 및 Lactobacillus spp. 추출물이 전립선 세포 내 항산화 활성에 미치는 영향)

  • 변정열;윤영호
    • Journal of Animal Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.719-726
    • /
    • 2006
  • Bovine whey protein are rich in cysteine, which is the rate limiting amino acid for synthesis of antioxidant glutathione(GSH). Some strains of Lactobacillus caseihas been reported to contain high level of GSH in cell extracts. The objective ofthis study was to determine whether enzymatically hydrolyzed whey protein isolate(WPI) and cell extract of Lb. casei HY2782 could increase intracellular GSH concentrations and protect against oxidant induced cell death in human prostate epithelial cell line (designated as RWPE1, and PC3MMM2 cells). Treatment of RWPE1 cellsandPC3MMM2 cells with hydrolyzed WPI (500g/ml) significantly increased GSH by28.2% and38.4% respectively. Compared with control cells receiving no hydrolyzed WPI(P<0.05). hydrolyzed WPI and Lb casei HY2782 cell extracts significantly protected RWPE1 and PC3MMM2 cellsfrom oxidant induced cell death compared with controls receiving no WPI. DNA damage associated with oxidant treatment was demonstrated by single cell gel (SCG) electrophoresis.

Effects of vitamin C on the formation of aflatoxin B1-DNA adduct in rat livers treated with radiation and aflatoxin B1 (Vitamin C가 방사선과 Aflatoxin B1을 처리한 흰쥐의 간세포에서 Aflatoxin B1-DNA Adduct 형성에 미치는 영향)

  • Kim, Soyoung;Kim, Hansoo;Kang, Jin-Soon
    • Food Science and Preservation
    • /
    • v.21 no.5
    • /
    • pp.747-756
    • /
    • 2014
  • The objective of this study was to examine the effects of vitamin C on the formation of aflatoxin $B_1$ ($AFB_1$)-DNA adduct and $AFB_1$-induing cellular oxidative damage in rat livers treated with radiation and $AFB_1$. Six-week-old male Sprague-Dawley rats were randomly divided into five groups: the control group, the $AFB_1$-treated group, the group treated with $AFB_1$ and vitamin C, the group treated with X-ray and $AFB_1$, and the group treated with X-ray and $AFB_1$ with vitamin C. On the first day of the experiment, only one dose of X-rays was exposed to the entire liver at 1,500 cGy. Next, vitamin C was injected at 10 mg/kg body weight via intraperitoneal injection, followed an hour later by the administration of 0.4 mg/kg of $AFB_1$ via intraperitoneal injection. These treatments were administered every three days for 15 days. On the 16th day, the animals were sacrificed. The $AFB_1$ contents of the rat sera were determined via indirect competitive ELISA. In the quantitative analysis of $AFB_1$ in the rat sera via ELISA, $5.17{\pm}0.34ng/mL$ of $AFB_1$ was detected in the $AFB_1$-treated groups, but the amount decreased more significantly to $3.23{\pm}0.76ng/mL$ in the groups treated with $AFB_1$ and vitamin C (p<0.01) than in the $AFB_1$-treated groups. The effect of vitamin C on $AFB_1$-DNA adduct formation was determined via ELISA. The values of $AFB_1$-DNA adduct formation were $9.38{\pm}0.41ng/mL$ in the $AFB_1$-treated groups, but the amount decreased more significantly to $5.28{\pm}0.32ng/mL$ in the groups treated with $AFB_1$ and vitamin C (p<0.01) than in the $AFB_1$-treated groups. Immunohistochemistry revealed that the accumulation of the $AFB_1$ was not observed in the normal liver tissue (G1). The $AFB_1$-positive materials were observed in the central vein and the portal vein of the liver tissue from the $AFB_1$(G2) treatment or the X-ray and $AFB_1$(G4) co-treatment, but the $AFB_1$-positive materials were observed weakly in the group treated with vitamin C (G3 and G5). These results indicate that vitamin C had ameliorating effects on the $AFB_1$ accumulation of liver tissue.

Protective Effects of Omija-tang on $H_2O_2$-induced apoptotic death of H9c2 cardiomyoblast cells (오미자탕(五味子湯)이 심근세포에 미치는 영향)

  • Han, Myoung-Ah;Choi, Woo-Jung;Kim, Dong-Woung;Jung, Dae-Young;Shin, Sun-Ho;Choi, Jin-Young
    • The Journal of Internal Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.181-190
    • /
    • 2002
  • The water extract of Omija-tang(OMJT) has been traditionally used for treatment of ischemic heart and brain damage in oriental medicine. However, little is known about the mechanism by which the water extract of OMJT protects cells from such damage. Therefore, this study was conducted to investigate the protective mechanisms of OMJT on $H_2O_2$-induced toxicity in H9c2 cardiomyoblast cells. Treatment of $H_2O_2$ markedly induced death of H9c2 cardiomyoblast cells in a dose-dependent manner. The characteristics of $H_2O_2$-induced death of H9c2 showed apparent apoptotic features, such as DNA fragmentation. However, OMJT significantly reduced both $H_2O_2$-induced cell death and chromatin fragmentation. The decrease of Bcl-XL expression by $H_2O_2$ was inhibited by OMJT. In addition, the increase of Bcl-XS and Bax expression were also inhibited by OMJT. In particular, Fas expression, which is generally recognized as cell death inducing signal by Fas/FasL interaction, was markedly increased by $H_2O_2$ in a time-dependent manner, whereas this increase was completely prevented by OMJT. The combined treatment of OMJT and $H_2O_2$ in H9c2 cells also reduced activation of caspase-9 and caspase-3 like protease. Taken together, this study indicates that the protective effects of the water extract of OMJT against oxidative damage may be mediated by the modulation of BcI-XL/S and Bax expression by way of the regulation of mitochondrial membrane potential and caspase cascades.

  • PDF

Comparison of Antioxidant Activities of Enzymatic and Methanolic Extracts from Ecklonia cava Stem and Leave (감태(Ecklonia cava) 줄기 및 잎의 효소적 추출물과 메탄올 추출물에 의한 항산화 활성비교)

  • Lee, Seung-Hong;Kim, Kil-Nam;Cha, Seon-Heui;Ahn, Gin-Nae;Jeon, You-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.9
    • /
    • pp.1139-1145
    • /
    • 2006
  • In this study, antioxidant activities of enzymatic and methanolic extracts from E. cava stem and leave were evaluated by measuring the scavenging activities on 1,1 diphenyl 2 picrylhydrazyl (DPPH), hydroxyl radical, hydrogen peroxide and the inhibitory effects on DNA damage induced by oxidative stress of cells. Enzymatic extracts were prepared by enzymatic hydrolysis of both stem and leave using food grade five different carbohydrases (Viscozyme, Celluclast, AMG, Termamyl, Ultraflo) and five proteases (Protamex, Kojizyme, Neutrase, Flavourzyme, Alcalase). The enzymatic extracts were lower than methanolic extracts in polyphenol contents, but higher in extraction yield by approximately 30%. The enzymatic extracts were superior to methanolic extracts in DPPH and H2O2 scavenging activities and DNA damage protective effect. There were no significant antioxidant activity difference between stem and leave, but the extracts of leave were relatively better than those of stem. In this study it is suggested that E. cava stem as well as its leave would be a good raw materials for antioxidants compound extraction and enzymatic hydrolysis would be a good strategy to prepare antioxidant extracts from seaweeds.

Neuroprotective Effects of Daebowonjeon on PC12 Cells Exposed to Ischemia (허혈 상태의 PC12 세포에 대한 대보원전(大補元煎)의 신경보호효과)

  • Kim, Bong-Sang;Lee, Sun-Woo;Moon, Byung-Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.117-125
    • /
    • 2007
  • Neuronal ischemia is a pathological process caused by a lack of oxygen (anoxia) and glucose (hypoglycemia), resulting in neuronal death. It is believed that apoptosis is one of the mechanisms involved in ischemic cell death. Neuronal apoptosis is a process characterized by nuclear DNA fragmentation, changes of plasma membrane organization. To elucidate the mechanism of neuronal death following ischemic insult and to develop neuroprotective effects of Daebowonjeon(DBWJ) against ischemic damage, in vitro models are used. In vitro models of cell death have been devloped with pheochromocytoma (PC12) cell, which have become widely used as neuronal models of oxidative stress, trophic factor, serum deprivation and chemical hypoxia. Using a special ischemic device and PC12 cultures, we investigated an in vitro model of ischemia based on combined Oxygen and Glucose Deprivation (OGD) insult, followed by reoxygenation, mimicking the pathological conditions of ischemia. In this study, Daebowonjeon rescued PC12 cells from Oxygen-Glucose Deprivation (OGD)-induced cell death in a dose-dependent manner The nuclear staining of PC12 cells clearly showed that DBWJ attenuated nuclear condensation and fragmentation which represent typical neuronal apoptotic characteristics. DBWJ also prevents the LDH release and induction of Hypoxia Inducing Factor (HIF)-1 by OGD-exposed PC12 cells. Furthermore, DBWJ reduced the activation of polyADP-ribose polymerase (PARP) by OGO-exposed PC12 cells. These results suggest that apoptosis is an important characteristic of OGD-induced neuronal death and that oriental medicine, such as DBWJ, may prevent PC12 cell from OG D-induced neuronal death by inhibiting the apoptotic process.

Deletion of GSTM1 and T1 Genes as a Risk Factor for Development of Acute Leukemia

  • Dunna, Nageswara Rao;Vure, Sugunakar;Sailaja, K.;Surekha, D.;Raghunadharao, D.;Rajappa, Senthil;Vishnupriya, S.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2221-2224
    • /
    • 2013
  • The glutathione S-transferases (GSTs) are a family of enzymes involved in the detoxification of a wide range of chemicals, including important environmental carcinogens, as well as chemotherapeutic agents. In the present study 294 acute leukemia cases, comprising 152 of acute lymphocytic leukemia (ALL) and 142 of acute myeloid leukemia, and 251 control samples were analyzed for GSTM1 and GSTT1 polymorphisms through multiplex PCR methods. Significantly increased frequencies of GSTM1 null genotype (M0), GSTT1 null genotype (T0) and GST double null genotype (T0M0) were observed in the both ALL and AML cases as compared to controls. When data were analyzed with respect to clinical variables, increased mean levels of WBC, Blast %, LDH and significant reduction in DFS were observed in both ALL and AML cases with T0 genotype. In conclusion, absence of both GST M & GST T might confer increased risk of developing ALL or AML. The absence of GST enzyme might lead to oxidative stress and subsequent DNA damage resulting in genomic instability, a hallmark of acute leukemia. The GST enzyme deficiency might also exert impact on clinical prognosis leading to poorer DFS. Hence GST genotyping can be made mandatory in management of acute leukemia so that more aggressive therapy such as allogenic stem cell transplantation may be planned in the case of patients with a null genotype.

An Experimental Study on the Hepatoprotective Effect of Gokajisilsosiho-Tang (곡아지실소시호탕(穀芽枳實小柴胡湯)의 간보호작용(肝保護作用)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Kim, Young-Jin;Kang, Dae-Geun;Lee, Jae-Ik;Kim, Kang-San;Kang, Byung-Ki;Cheon, Young-Sae
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.299-308
    • /
    • 2000
  • This study was performed to elucidate the effects of Gokajisilsosiho-Tang(GJST) on the lactic dehydrogenase(LDH) release, cell viability and activity, lipid peroxidation, DNA synthesis and the changes of total protein synthesis and GSH changes in vivo and in vitro in rat cultured hepatocytes from hydrogen peroxide$(H_2O_2)$-induced injury. The GJST extract had not an effect on cytotoxicity in all experimental results. The treatment of GJST extract of $160{\mu}g/ml$, $320{\mu}g/ml$ showed the significant effect to decrease LDH leakage induced by t-BHP in cultured rat hepatocytes. The higher concentration of GJST extract than $160{\mu}g/ml$, showed the inhibitory effect on decreasing cell viability induced by t-BHP. The treatment of t-BHP to rat cultured hepatocytes resulted in a concentration dependent increase in TBARS, in the presence of GJST extract the production of TBARS induced by hydrogen peroxide was inhibited concentration dependently, significantly inhibited at $80{\mu}g/ml$ of GJST extract and above. The GJST extract simutaneously present with t-BHP prevented the loss of total protein and GSH in a concentration dependent manner. These results suggested that GJST extract may play a hepatoprotective role in oxidative damage induced by hydrogen peroxide and a therapeutic potential of inhibiting liver injury.

  • PDF

Antioxidant Activities of Steamed Extract from Squid (Todarodes pacificus) Muscle

  • Lee, Woo-Shin;Kim, Yong-Tae;Byun, Hee-Guk
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.2
    • /
    • pp.127-134
    • /
    • 2011
  • The purpose of this study was to purify antioxidant substances from steamed squid extract (SSE). The yield of SSE was 8% by dry weight. The approximate compositions of SSE proteins, lipids, moisture, carbohydrate and ash were 64.95%, 1.69%, 7.23%, 4.44% and 21.69%, respectively. The major amino acids in SSE were taurine (29.17%), glycine (20.33%), alanine (12.51%), and glutamic acid (9.83%). Antioxidant activities were evaluated using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging activity, which was measured as 24.7% at 1.0 mg/mL. Four SSE fractions were isolated by Sephadex G-25 gel chromatography; the F2 fraction showed the highest DPPH radical scavenging activity. The F2 fraction was separated by reverse-phase high performance liquid chromatography (HPLC) using an octadecylsilane (ODS) column, yielding a purified antioxidant substance with a DPPH radical scavenging activity of 64.41% at 1.0 mg/mL, representing a 2.64-fold increase in the scavenging activity of SSE purified by the 3-step procedure. The amino acid compositions showed that purified SSE was rich in taurine, glycine, glutamic acid and alanine. The purified SSE significantly elevated 2',7'-dichlorodihydrofluororescein diacetate (DCFH-DA) fluorescence probe, which confirms its effective radical scavenging potential in cellular ROS. In addition, the SSE significantly inhibited oxidative damage of purified genomic DNA. These results suggest that a purified antioxidant substance from SSE can be used as a potential natural compound-based antioxidant in the functional food and pharmaceutical industries.

Role of CCAAT/ Enhancer Binding Protein ${\beta}$ Activation in the Induction of Glutathione S-Transferase A2 by Toluene

  • Choi, Dal-Woong;Sohn, Jong-Ryeul;Moon, Kyung-Whan;Byeon, Sang-Hoon;Kim, Hi-Chol;Kim, Young-Whan
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.341-344
    • /
    • 2005
  • The expression of the glutathione S-transferase (GST), whose induction accounts for antioxidant defense system, is regulated by activation of CCAAT/enhancer binding protein ${\beta}$ ($C/EBP{\beta}$), Sick house syndrome (SHS) presents healthy damage owing to the indoor environment of a building. Toluene has been implicated in one of the important causes of SHS. The present study investigated the effects of toluene treatment on the induction of GSTA2 gene and its mechanism. H411E cells treated with toluene, and GSTA2 expression was determined by immunoblot analysis. The translocation of $C/EBP{\beta}$ was assessed by immunocytochemical assays. $C/EBP{\beta}$ DNA binding activity was determined by electrophoretic mobility shift assays. The role of the C/EBP binding site in the induction of the GSTA2 gene was assessed by luciferase reporter-gene activity. Toluene induced GSTA2 protein expression. In toluene-treated cells, $C/EBP{\beta}$ translocated to the nucleus and bound to the consensus sequence of C/EBP (TTGCGCAA). Toluene treatment increased luciferase reporter-gene activity in cells transfected with the C/EBP-containing regulatory region of the GSTA2 gene. Oxidative stress is believed to play an important role in the induction of GSTA2 gene by toluene This study shows that toluene-induced GSTA2 gene expression is dependent upon nuclear translocation and binding of $C/EBP{\beta}$ to the C/EBP response element in the GSTA2 gene promoter.

  • PDF