• Title/Summary/Keyword: oxidation site of PS II

Search Result 2, Processing Time 0.017 seconds

The Effects of ozone on the greening of barley (Hordeum vulgare L.) seedling (보리 (Hordeum vulgare L.) 유식물의 녹화에 미치는 오존의 영향)

  • 박강은;정화숙
    • Journal of Environmental Science International
    • /
    • v.5 no.4
    • /
    • pp.545-553
    • /
    • 1996
  • The effects of 0.2 ppm ozone on the developing chloroplast of barley (Hordeum vulgare L.) seedling during greening were examined by chlorophyll contents, photosynthetic electron tiansport activity, Fo, Fv and fluorescence quenching coefficient. Chlorophyll contents of seedling treated with ozone were not changed in comparison with the control during the 96 h greening experiment, but PS II activity of the chloroplasts of seedlings treated with ozone was decreases by- l5%. Fo was slightly decreased but Fv was decreases by 5% in comparison with the control, In fluorescence quenching analysis, qP and qE were decreased by 11% and 9%, respectively, in comparison with the control. These results suggest that oxidation site of PS II is the site affected mostly and PQ pool is also affected slightly by 0.2 ppm ozone.

  • PDF

The Effects of W-B Radiation on Photosynthetic Electron Transport of Baney (Hondeum vulgare L) Leaves (UV-B가 보리(Hordeum vulgare L.)잎의 광합성 전자전달에 미치는 영향)

  • 박강은;정화숙
    • Journal of Environmental Science International
    • /
    • v.6 no.4
    • /
    • pp.369-378
    • /
    • 1997
  • The effects of various intensity of W-B on barley seeding were investigated by PS I and II activities and chlorophyll fluorescence. The Inhibitory effect of UV-B radiation on electron transport activity was Increased as the intensity of UV-B Irradiation was increased. Especially, PS I is more sensitive to UV-B radiation than PS I is. By the addition of uncle electron donor, DPC, to the chloroplasts of the barley seedlings treated with UV-B, the photoreduction of DCPIP was recovered by only 1 IBI on electron transport activity. However, the activity of PS II was Inhibited by 45% by the treatment with UV-B, but recovered it only 11% by the addition of DPC. These suggest that other sites besides the oxidation site of PS II may be affected more by UV-B Irradiation. As the intensify of UV-B was Increased, Fo was Increased while Fv was decreased, and thus Fv/Fm was decreased. This means that photochemical efficiency was reduced. With this parameters, it might be that UV-B radiation affected adversely to around PS II.

  • PDF