• Title/Summary/Keyword: oxidation process

Search Result 2,180, Processing Time 0.027 seconds

Effect of NO on Catalytic Soot Oxidation in Tight Contact with $Pt/CeO_2$ Using a Flow Reactor System ($Pt/CeO_2$ 촉매와 Tight Contact 한 상태의 Model Soot 산화에 NO가 미치는 영향에 관한 실험적 연구)

  • Lee, Dong-Il;Song, Chang-Hoon;Song, Soon-Ho;Chun, Kwang-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.52-56
    • /
    • 2011
  • Active regeneration in CDPF requires $O_2$ which regenerates soot at high temperature. However, small amount of NO can interrupt $O_2$ regeneration in CDPF. To verify this phenomena, soot oxidation experiments using a flow reactor with a $Pr/CeO_2$ catalyst are carried out to simulate Catalyzed Diesel Particulate Filter (CDPF) phenomena. Catalytic soot oxidation with and without small amount of NO is conducted under tight contact condition. As the heating rate rises, the temperature gap of maximum reaction rate is increased between with and without 50ppm NO. To accelerate the $NO_2$ de-coupling effect, CTO process is performed to eliminate interfacial contact for that time. As CTO process is extended, temperature which indicates peak reaction rate increases. From this result, it is found that small amount of NO can affect tight contact soot oxidation by removal of interfacial contact between soot and catalyst.

Fenton난s Reagent Oxidation of Refractory Organics in Petrochemical Plant Effluent (석유화학공장 방류수내 난분해성 유기물의 Fenton 산화처리)

  • Lee, Kyu-Hoon;Jung, Dae-Young;Park, Tae-Joo
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.51-59
    • /
    • 1996
  • The purpose of this study was to evaluate the partial oxidation of the biological treatment plant effluents using Fenton's reagent as a pretreatment step prior to a tertiary biological oxidation of these effluents. Fenton's reagent was evaluated as a pretreatment process for inhibitory or refractory organics. Based on the Fenton oxidation system, the petrochemical wastewater treatment plant effluent was shown to have significant improvement in toxicity after oxidation with hydrogen peroxide. For example, at ranee of 42 ∼ 184 mg/L COD of petrochemical plant effluents, the COD removal efficiencies were from 38.2% to 60.1% after reaction with hydrogen peroxide 200 mg/L and Fe2+ 100 mg/L and reaction time was 30 minutes. The total TOC reduction were about 15.8∼22.4% with same test condition and difference between the overall removal rate and BOD/COD ratio after Fenton's oxidation estabilished in the biodegradation and otherwise meets the discharge standard or reuse for cooling tower make-up water.

  • PDF

The Effect of Sb Addition on the High Temperature Oxidation in the Steels (강중 Sb 첨가가 고온산화에 미치는 영향)

  • Oh, I.S.;Cho, K.C.;Kim, D.H.;Kim, G.M.;Sohn, I.R.
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.228-234
    • /
    • 2009
  • It is well known that the formation of $SiO_2$, $Al_2O_3$ and/or other oxides at the steel surface during the annealing process deteriorates the surface quality of galvanized steels. It is important to minimize oxide formation during the annealing process for the superior surface quality of galvanized steels. In order to minimize the oxide formation on the steel surface, antimony was chosen as an alloying element to the commercial steels. Then, the effect of alloying element on the oxidation behavior was investigated. A small amount of antimony was added to two types of steels, one with 0.1% C, 1.0% Si, 1.5% Mn, 0.08% P, and the other with 0.002% C, 0.001% Si, 0.104% Mn, 0.01% P. Then, the oxidation behavior was investigated from $650{\sim}900^{\circ}C$ in the air. The addition of antimony to the steels retarded the outward diffusion of elements during the oxidation, resulting in reduction of the oxidation rate.

Comparison of Acetaminophen Degradation Performance using Advanced Oxidation Process (고급산화공정을 이용한 아세트아미노펜 분해 성능 비교)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.31 no.4
    • /
    • pp.319-328
    • /
    • 2022
  • This study investigated the treatment of acetaminophen in municipal wastewater by conventional ozonation, ozone-based advanced oxidation, ozone/UV, and the electro-peroxone process. The ozone/UV process and electro-peroxone process of electric power consumption increased 1.25 and 2.04 times, respectively, compared to the ozone process. The pseudo-steady OH radical concentration was the greatest in the electro-peroxone process and lowest in the ozone process. The specific energy consumption for TOC decomposition of the ozone/UV process and electro-peroxone process were 22.8% and 15.5% of the ozone process, respectively. Results suggest that it is advantageous in terms of degradation performance and energy consumption to use a combination of processes in municipal wastewater treatment, rather than an ozone process alone. In combination with the ozone process, the electrolysis process was found to be more advantageous than the UV process.

What is the Key Step in Muscle Fatty Acid Oxidation after Change of Plasma Free Fatty Acids Level in Rats?

  • Doh, Kyung-Oh;Suh, Sang-Dug;Kim, Jong-Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.3
    • /
    • pp.173-177
    • /
    • 2005
  • The purpose of this study was to discern the critical point in skeletal muscle fatty acid oxidation by changing plasma free fatty acids (FFA) level in rat. In the study, 3 key steps in lipid oxidation were examined after changing plasma FFA level by acipimox. The rates of both palmitate and palmitoylcarnitine oxidation were decreased by decrease of plasma FFA level, however, carnitine palmitoyl transferase (CPT) 1 activity was not changed, suggesting CPT1 activity may not be involved in the fatty acid oxidation at the early phase of plasma FFA change. In the fasted rats, ${\beta}-hydroxy$ acyl-CoA dehydrogenase (${\beta}$-HAD) activity was depressed to a similar extent as palmitate oxidation by a decrease of plasma FFA level. This suggested that ${\beta}-oxidation$ might be an important process to regulate fatty acid oxidation at the early period of plasma FFA change. Citrate synthase activity was not altered by the change of plasma FFA level. In conclusion, the critical step in fatty acids oxidation of skeletal muscles by the change of plasma FFA level by acipimox in fasting rats might be the ${\beta}-oxidation$ step rather than CPT1 and TCA cycle pathways.

Methodology Development for the Reuse of Sludge Generated from Fenton's Oxidation Process (펜톤산화 공정에서 발생하는 슬러지의 재활용 방안)

  • Koo, Tai-Wan;Cho, Soon-Haing;Choi, Young-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1083-1091
    • /
    • 2000
  • The objective of this study is to develop effective and economical treatment processes for the removal of non-biodegradable organics by reusing the sludge generated from Fenton's Oxidation Process. It was found that about 50% of coagulants and 50% of catalyst can be reduced by reusing the sludge generated from Fenton's Oxidation Process. It was also found that the amount of sludge generation can be reduced in coagulation process and Fenton's Oxidation Process. From the results of bench-scale test, it was found that the average removal efficiency increased to 8.5% and the amount of sludge generation was reduced up to 35% by reusing the sludge as coagulant. The average organic removal efficiency increased to 5.3% and the amount of sludge generation was reduced up to 14% by reusing the sludge as catalyst in Fenton's Oxidation. It can be concluded that the reuse of sludge generated from Fenton's Oxidation Process would be reduced cost of chemical consumption and Fenton's sludge treatment.

  • PDF

UV/H2O2 Oxidation for Treatment of Organic Compound-spilled Water (UV/H2O2 산화를 활용한 유기오염물질 유출수 처리용 공정 연구)

  • Kim, Nahee;Lee, Sangbin;Park, Gunn;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.10
    • /
    • pp.5-12
    • /
    • 2022
  • In this study, we investigated the UV/H2O2 process to treat organic compound-spilled water. In consideration of usage and properties, benzene, toluene, phenol, and methyl ethyl ketone were selected as representative organic compounds. The selected material was first removed by natural volatilization and aeration that simulated the pretreatment of the prcoess. After that, UV/H2O2 oxidation experiments were conducted under various H2O2 concentration conditions. Benzene and toluene were mostly volatilized before reaching the oxidation process due to high volatility. Considering the volatility, oxidation experiments were performed at an initial concentration of 5 mg/L for benzene and toluene. The UV/H2O2 oxidation process achieved 100% of benzene and toluene removal after 20 minutes under all hydrogen peroxide concentration conditions. The phenol was rarely removed from the volatile experiments and oxidation tests were performed at an initial concentration of 50 mg/L. The process showed 100 % phenol removal after 30 minutes under 0.12 v/v% of hydrogen peroxide concentration condition. Methyl ethyl ketone was removed 58 % after 2 hours of volatile experiments. The process showed 99.7% Methyl ethyl ketone removal after 40 minutes under 0.08 v/v% of hydrogen peroxide concentration condition. It was confirmed that the UV/H2O2 process showed high decomposition efficiency for the four selected organic compounds, and identified the amount of hydrogen peroxide in classified organic contaminants.

Removal of 2,4-D by an Fe(II)/persulfate/Electrochemical Oxidation Process (Fe(II)/과황산/전기화학적 산화 공정에 의한 2,4-D의 제거)

  • Hyun, Young Hwan;Choi, Jiyeon;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.1
    • /
    • pp.45-53
    • /
    • 2021
  • The removal of 2,4-dichlorophenoxyacetic acid (2,4-D) in aqueous solution by coupled electro-oxidation and Fe(II) activated persulfate oxidation process was investigated. The electrochemical oxidation was performed using carbon sheet electrode and persulfate using Fe(II) ion as an activator. The oxidation efficiency was investigated by varying current density (2 - 10 mA/㎠), electrolyte (Na2SO4) concentration (10 - 100 mM), persulfate concentration (5 - 20 mM), and Fe(II) concentration (10 - 20 mM). The 2,4-D removal efficiency was in the order of Fe(II) activated persulfate-assisted electrochemical oxidation (Fe(II)/PS/ECO, 91%) > persulfate-electrochemical oxidation (PS/ECO, 51%) > electro-oxidation (EO, 36%). The persulfate can be activated by electron transfer in PS/ECO system, however, the addition of Fe(II) as an activator enhanced 2,4-D degradation in the Fe(II)/PS/ECO system. The 2,4-D removal efficiency was not affected by the initial pHs (3 - 9). The presence of anions (Cl- and HCO3-) inhibited the 2,4-D removal in Fe(II)/PS/ECO system due to scavenging of sulfate radical. Scavenger experiment using tert-butyl alcohol (TBA) and methanol (MeOH) confirmed that although both sulfate (SO4•-) and hydroxyl (•OH) radicals existed in Fe(II)/PS/ECO system, hydroxyl radical (SO4•-) was the predominant radical.

A Study on Industrial Preparation Method of Ammonium Sulfate by Non-catalytic Oxidation (無觸媒酸化에 依한 黃酸암모늄의 工業的 製法에 關한 硏究)

  • Chung, Ki-Yong
    • Journal of the Korean Chemical Society
    • /
    • v.10 no.2
    • /
    • pp.76-90
    • /
    • 1966
  • Ammonium sulfate synthesized by the air oxidation methods without catalyst using the reaction vessel which was fitted with fritted glass at the bottom of it and introducing, through the bottom, ammonia and air with constant flow rates to sulfurous acid solution of constant concentrations at the given temperatures. The experiment showed that the oxidation process was accelerated in accord with the increase of the air flow rates when the ammonia flow rate was constantly kept at ca. 100ml/min. in high temperatures. When the pH of the solution reached 9.0, the oxidation was nearly completed. It is assumed that in the process of reaction, $[O_{2}{\to}HSO_{3}^-]^{\neq}$ would be produced as an activated complex and the reaction was thought to be first order. The experiment indicated that the 0.5M sulfurous solution could be oxidized up to 98.54% at the flow rates of ammonia and air, 100ml/min., and 4l/min., respectively at $50^{\circ}C$.

  • PDF

Effect of Applied Load and Sliding Speed on Wear Behavior of Thermally Sprayed STS316 Coating (STS316 용사코팅의 마모거동에 미치는 작용하중 및 미끄럼속도의 영향)

  • Lee, Jae-Hong;Kim, Yeong-Sik
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.74-79
    • /
    • 2014
  • This article aims at investigating the effect of applied load and sliding speed on wear behavior of thermally spraryed STS316 coating. STS316 coatings were fabricated by flame spray process according to optimal parameters on steel substrates. Dry sliding wear tests were performed on STS316 coating using four different applied load as 10, 15, 20 and 25 N and four different sliding speed as 15, 30, 45 and 60 rpm. Wear behavior on worn surface was investigated using scanning electron microscope(SEM) and energy disperive X-ray spectroscopy(EDS). The dominant wear mechanism of STS316 coating under low applied load and sliding speed was oxidation on worn surface. However, under high applied load and sliding speed the principal wear mechanism was abrasion on oxidation film and damage of oxidation film.