• Title/Summary/Keyword: overtopping height

Search Result 57, Processing Time 0.02 seconds

Assessment of Levee Slope Reinforced with Bio-polymer by Image Analysis (영상분석을 통한 바이오폴리머로 보강된 제방사면 안정성 해석)

  • Ko, Dongwoo;Kang, Joongu
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.258-266
    • /
    • 2019
  • This study was conducted to apply natural river technologies to levees and examine the results. The new eco-friendly bio-polymer was applied, a combination of eco-friendly biopolymers and soil, to levee slope to enhance durability and eco-friendliness and to establish reinforcement measures against unstable levees due to overtopping. A semi-prototype levee of 1 m in height, 3 m in width, with a 1:2 slope and 5 m length, was constructed at the Andong River Experiment Center. The bio-soil mixed with the biopolymer and the soil at an appropriate ratio was treated with a 5 cm thickness on the surface of levee to perform the stability evaluation according to overtopping. Using the pixel-based analysis technique using the image analysis program, the breached area of levee slope was calculated over time. As a result, the time for complete decay occurs more than 12 times than that of ordinary soil levee. Therefore, when the new substance is applied to the surface of levee, the decay delay effect appears to be high.

Uncertainty Analysis for Dam-Break Floodwave Simulation (댐 붕괴 홍수모의에 대한 불확실도 해석)

  • Lee, Hong-Rae;Han, Geon-Yeon;Jo, Won-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.337-345
    • /
    • 1998
  • DAMBRK-U model is developed for the evaluation of overtopping risk of dam and levee and for the estimation of uncertainty in floodwave simulation. The original algorithm is revised and expanded to include Monte-Carlo analysis to estimate them. The model is tested by applying to hypothetical channels of widening, uniform and narrowing geometry. Larger variation in discharge and water depth are expected at narrower sections of a river. It is calibrated by applying to the Hantan River, where severe damages from Yunchun dam-break and levee overtopping occurred on July, 1996. Overtopping risk of dam is calculated for various discharge conditions for Yunchun-dam, and that of levee is also calculated by comparing levee height with flood level at Hantan recreation area. Simulation results show that the overflow depth of flood level is 1,266~0.782 m and the overflow risk turns out to be 100%.

  • PDF

Review on Application of Wave Model for Calculation of Freeboard in Hydraulic Structure (수공구조물 여유고 산정을 위한 파랑모형의 적용성 검토)

  • Kim, Kyoung-Ho;Lee, Ho-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.25-30
    • /
    • 2007
  • Most of dams and reservoirs were made from natural materials, such as soil, sand and gravel. This type of hydraulic structure has the danger of collapse by overflow during a flood. Freeboard is the vertical distance between the crest of the dam and the full supply level in the reservoir. It must be sufficient to prevent overtopping from over flow. Thus, freeboard determination involves engineering judgment, statistical analysis, and consideration of the damage that would result from the overtopping of a hydraulic structure. This study attempts to calculate the wave height in dam, which is needed for the determination of the freeboard of the dam. Chung-ju dam is selected as the study area. Using the empirical formulas, the wave heights in dam were calculated, and the results were compared with those by the SWAN model, which is a typical wave model. The difference between the calculated results from the empirical formulas and those by the SWAN model is considerably large. This is because empirical equations consider only fetch or fetch and wind velocity, while the SWAN model considers depth and topography data as well.

Reflection and Dissipation Characteristics of Non-overtopping Quarter Circle Breakwater with Low-mound Rubble Base

  • Balakrishna, K;Hegde, Arkal Vittal;Binumol, S
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.44-54
    • /
    • 2015
  • Breakwaters are the coastal structures constructed either perpendicular (shore connected) or parallel (detached) to the coast. The main function of breakwater is to create a tranquil medium on its leeside by reflecting the waves and also dissipating the wave energy arriving from seaside, resulting in ease of manoeuvrability to boats or ships to their berthing places. Different types of breakwaters are being used at present, such as rubble mound breakwater, vertical wall type breakwater and composite breakwater. The objective of this paper is to investigate reflection coefficients (Kr) and dissipation (loss) coefficients (Kl) for physical models of Quarter circle caisson breakwater of three different radii of 0.550 m, 0.575 m and 0.600 m with S/D ratio of 2.5 (S=spacing between perforations, D=diameter of perforations). The models were tested in the monochromatic wave flume of the department, for different incident wave heights (Hi), Wave periods (T) and water depths (d). It was observed that reflection coefficient increased with increase in the wave steepness (Hi/gT2) and decreased with increase in depth parameter (d/gT2) and hs/d (Height of structure including rubble base/depth of water). The loss coefficient decreased with increase in the wave steepness and increased with increase in depth parameter and hs/d.

A Basic Study on Relative Liquefaction Failure Risk Assessment of Domestic Small to Medium-Sized Earthfill Dams (국내 중소규모 흙댐의 상대적 액상화 파괴위험도 평가 기초 연구)

  • Park, Tae Hoon;Ha, Ik-soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.147-155
    • /
    • 2023
  • This study aims to present a method to evaluate the relative risk of failure due to liquefaction of domestic small to medium-sized earthfill dams with a height of less than 15 m, which has little information on geotechnical properties. Based on the results of previous researches, a series of methods and procedures for estimating the probability of dam failure due to liquefaction, which calculates the probability of liquefaction occurrence of the dam body, the amount of settlement at the dam crest according to the estimation of the residual strength of the dam after liquefaction, the overtopping depth determined from the amount of settlement at the dam crest, and the probability of failure of the dam due to overtopping was explicitly presented. To this end, representative properties essential for estimating the probability of failure due to the liquefaction of small to medium-sized earthfill dams were presented. Since it is almost impossible to directly determine these representative properties for each of the target dams because it is almost impossible to obtain geotechnical property information, they were estimated and determined from the results of field and laboratory tests conducted on existing small to medium-sized earthfill dams in previous researches. The method and procedure presented in this study were applied to 12 earthfill dams on a trial basis, and the liquefaction failure probability was calculated. The analysis of the calculation results confirmed that the representative properties were reasonable and that the overall evaluation procedure and method were effective.

Impacts of sea-level rise on port facilities

  • Son, Chang-Bae;Kim, Chang-Je;Jang, Won-Yil;Matsubara, Yuhei;Noda, Hedeaki;Kim, Mi-Kum
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.173-177
    • /
    • 2006
  • From the viewpoint of coastal hydrodynamics, one of the most important effects of global warming is a sea-level rise in coastal areas. In the present study, impacts on port facilities against sea-level rise were investigated. The sea-level rise causes the increase of the water depth, and it generates variations on the wave height, buoyancy, tidal system and nearshore current system and so on. The increase of water depth gives rise to the decrease of crown height of the structure and it causes increase of wave overtopping quantity. It may flood the port zone and its facilities, and may decrease harbor tranquility. It also leads to difficulties on navigation, mooring and loading/unloading at the port. Increase in water depth also causes increase of wave height in surf zone. This high wave makes structures unstable and may cause them to collapse during storm. In addition, increase in buoyant force due to sea-level rise also makes the gravity type structures unstable. Consequently, theses variations due to sea-level rise will cause functional deterioration of port facilities. In order to protect port facilities from the functional deterioration, reinforcement plan is required such as raising the crown height and increase in block weight and so on. Hence proper estimation method for the protection cost is necessary in order to protect port facilities efficiently. Moreover response strategies and integrated coastal zone management plan is required to maintain the function of port facilities. A simple estimation of cost for breakwaters in Korea was performed in the present study.

  • PDF

Prediction of earthquake-induced crest settlement of embankment dams using gene expression programming

  • Evren, Seyrek;Sadettin, Topcu
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.637-651
    • /
    • 2022
  • The seismic design of embankment dams requires more comprehensive studies to understand the behaviour of dams. Deformations primarily control this behaviour occur during or after earthquake loading. Dam failures and incidents show that the impacts of deformations should be reviewed for existing and new embankment dams. Overtopping erosion failure can occur if crest deformations exceed the freeboard at the time of the deformations. Therefore, crest settlement is one of the most critical deformations. This study developed empirical formulas using Gene Expression Programming (GEP) based on 88 cases. In the analyses, dam height (Hd), alluvium thickness (Ha), the magnitude-acceleration-factor (MAF) values developed based on earthquake magnitude (Mw) and peak ground acceleration (PGA) within this study have been chosen as variables. Results show that GEP models developed in the paper are remarkably robust and accessible tools to predict earthquake-induced crest settlement of embankment dams and perform superior to the existing formulation. Also, dam engineering professionals can use them practically because the variables of prediction equations are easily accessible after the earthquake.

Runup Characteristics with the Variations of Wave Spectral Shape (파랑 스펙트럼 형상에 따른 처오름 특성)

  • Park, Seung Min;Yoon, Jong Tae;Jeong, Weon Mu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.6
    • /
    • pp.381-387
    • /
    • 2014
  • Recently the large-height swell-like waves generated in the eastern coast of South Korea have been observed frequently. The characteristics of the runup and overtopping of the large-height swell-like waves formed in deep water and attack the coast, causing damages to both lives and facilities have been studied. The correlation between spectral shape parameters and significant wave height has been investigated by analyzing long term wave spectrum data. Numerical runup experiments using MIKE21 BW Module were performed with $Q_p$, additional shape parameter, and identified the variations and characteristics of runup heights with respect to the variations of spectral shape.

Seismic performance evaluation of agricultural reservoir embankment based on overtopping prevention structures installation

  • Bo Ra Yun;Jung Hyun Ryu;Ji Sang Han;Dal Won Lee
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.511-526
    • /
    • 2023
  • In this study, three types of structures-stepped gabion retaining walls, vertical gabion retaining walls, and parapets-were installed on the dam floor crest to prevent the overflow of deteriorative homogeneous reservoirs. The acceleration response, displacement behavior, and pore water pressure ratio behavior were compared and evaluated using shaking-table model tests. The experimental conditions were set to 0.154 g in consideration of the domestic standard and the seismic acceleration range according to the magnitude of the earthquake, and the input waveform was applied with Pohang, Gongen, and artificial earthquake waves. The acceleration response according to the design ground acceleration increased as the height of the embankment increased, and the observed value were larger in the range of 1.1 to 2.1 times the input acceleration for all structures. The horizontal and vertical displacements exhibited maximum values on the upstream slope, and the embankment was evaluated as stable and included within the allowable range for all waveforms. The settlement ratio considering the similarity law exhibited the least change in the case of the parapet structure. The amplification ratio was 1.1 to 1.5 times in all structures, with the largest observed in the dam crest. The maximum excess pore water pressure ratio was in the range of 0.010 - 0.021, and the liquefaction evaluation standard was within 1.0, which was considered very stable.

Numerical Simulation for Deformation Characteristics of Artificial Reef (인공리프 제체의 변형특성에 관한 수치시뮬레이션)

  • Yoon, Seong-Jin;Park, Young-Suk;Kim, Kyu-Han;Pyun, Chong-Kun
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.18-24
    • /
    • 2010
  • Submerged rubble structures include artificial reef and the mound part of the rubble mound breakwater. Artificial reef is a type of the submerged wave absorbing structure installed in a coastal zone to prevent beach erosion and designed to initially reduce the energy of incoming waves so that its run-up height and overtopping quantity can be decreased. In order to ascertain the stability of such submerged rubble structures, minimum weight of the rubble has to be calculated first from the incoming wave height using Hudson's formula or Brebner-Donnelly formula. Based on the calculated minimum weight, a model is built for use in a hydraulic model test carried out to check its stability. The foregoing two formulas used to calculate the minimum weight are empirically derived formulas based on the result of the tests on the rubble mound breakwater and it is, therefore, difficult for us to apply them directly in the calculation of the minimum weight of the submerged structures. Accordingly, this study comes up with a numerical simulation method capable of deformation analysis for rubble structures. This study also tries to identify the deformation mechanism of the submerged rubble structures using the numerical simulation. The method researched through this study will be sufficient for use for usual preparations of the design guidelines for submerged rubble structures.