• Title/Summary/Keyword: oversize hole

Search Result 6, Processing Time 0.023 seconds

A Study on the Serviceability of High-Tension Bolt Friction Joints according to Oversize Bolt Holes (과대 볼트구멍에 따른 고장력볼트 마찰이음의 사용성에 관한 연구)

  • Park, Jeong-Ung;Yang, Seung-Hyun;Cho, Kang-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.2055-2061
    • /
    • 2009
  • There can be some variation in the load carrying capacity of high-tension bolt friction joints when oversize bolt holes are made on the base plate and the cover plate. This study performed a static tensile test in order to examine the variation of slip load and slip coefficient according to standard bolt hole and oversize bolt hole in high-tension bolt friction joints. According to the results of the static tensile test, the slip coefficient changed to some degree according to oversize bolt holes on the base plate and the cover plate, but it was somewhat unreasonable to find a pattern in the change. Sliding strength showed a difference of up to 26% between the use of standard bolt holes and the use of oversize bolt holes. Because this exceeds the design sliding strength, however, its effect on the serviceability of joints under service load is insignificant. Thus, if the regulation on oversize bolt holes, which may be inevitable in making steel members, is applied flexibly, we may improve efficiency and economy in the design and construction of structures.

Slip Behavior of Friction Type High-Tension Bolted Joints with Oversize Hole (과대공을 갖는 고장력 볼트 마찰이음부의 미끄러짐 거동)

  • Cho, Sun Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.301-307
    • /
    • 1997
  • In field fabrication of steel members, the oversize hole is frequently required due to reaming and mismatching. But, there are no provisions and investigations about oversize hole in the Korean specifications. So, in this study, the tension test of friction type high-tention bolted joints is performed with parameters of bolt hole size, surface treatment and tightening force, and investigate the effect of slip behavior with those parameters. From the results, the enough tightening force is needed to obtain some degree slip load in shot blast treatment case, although tightening force is reduced somewhat, it is no problem to guarantee slip load in zincrich primer case. The slip behavior of joints with oversize hole(26mm) is similar to the slip behavior of joints with hole of nominal size.

  • PDF

A Study on Serviceability of Oversized Bolt Hole in High-Tension Bolt Joint Subjected to Bending (휨을 받는 고장력볼트 체결부에서 과대공에 따른 사용성에 관한 연구)

  • Park, Jeong-Ung;Yang, Seung-Hyun;Jang, Suk-In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2831-2836
    • /
    • 2009
  • If a design load exceeding the frictional force of the contact surface is applied to the connection of steel members using a high-tension bolt friction joint, sliding occurs and the connection of the steel members bears the design load through the shear strength and bearing strength of the bolt and the base plate. The sliding distance can be determined by the tensile force of the bolt, the friction coefficient of the contact surface, and the position of the bolt in the base plate hole. This study measured and analyzed sliding according to standard bolt hole and oversize bolt hole when pure bending moment and tensile force were applied to high-tension bolt joints with different sizes of bolt holes made in the base plate and the cover plate. In a high-tension bolt joint receiving pure bending moment and tensile force, the load causing sliding in an oversize bolt hole was $74\sim94%$ of that in a standard bolt hole. In a member receiving tensile force, the sliding load ratio was lower when the size of oversize bolt holes in the base plate and the cover plate was large. In addition, the size of the oversize bolt hole in the base plate was more closely correlated with the change of sliding loadthan the size of the oversize bolt hole in the base plate.

Experimental Study on Behavior of High Strength Bolted Friction Joint with Oversized and Slotted Holes (과대구멍과 슬롯구멍을 갖는 고력볼트 마찰이음부의 거동에 관한 실험적 연구)

  • Kim, Yong Hwan;Roh, Won Kyoung;Lee, Seong Hui;Kim, Jin Ho;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.683-690
    • /
    • 2008
  • When steel fabricators erect structural members in field, temporary tightening of fastener should be useful. However, if bolt holes are not aligned by production error or natural condition, additional effort andpain should be provided to align bolt holes. It lead to longer period than times of construction (a primarily day of construction) and more cost than originally cost. This problem will be overcomed by oversize or slotted holes. Early, AISC and Eurocode have included provision for design process such oversize or slotted holes. But, domestic design method is not refered about oversize and slotted holes. Meanwhile, domestic design method and construction environment are variance with Europe and the United States of America. Therefore, a suitable design method for oversize and slotted holes in domestic real condition is needed. In this study, we evaluated behavior of the joints and decided the friction coefficient on oversize and slotted holes of friction joints with high strength bolts.

An Experimental and Analytical Studies on the Mechanical Behavior of High Tension Bolted Joints with Oversize Hole (과대공을 갖는 고장력 볼트 이음부의 역학적 거동에 관한 실험 및 해석적 연구)

  • Lee, Seung Yong;Park, Young Hoon;Cho, Sun Kyu;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.355-367
    • /
    • 1998
  • To evaluate the mechanical behavior and the compressive stress distribution in high tension bolted joints according to the size of bolt hole, the experimental and analytical studies are performed with enlarging bolt hole size. In experimental study, the static test is performed to measure the slip coefficient, and the fatigue test is also performed to evaluate the fatigue strength and failure pattern of fatigue crack. In analytical study, the compressive stress distribution is investigated by using the finite element analysis. From the result of experimental study, the slip coefficient and fatigue strength of the high tension bolted joints with oversize hole are not much different but somewhat it has decreased. These are because the size of bolt hole is larger than the holes of nominal size, therefore the width of clamping force is decreased and the compressive stress distribution area is smaller, this is certificated in the finite element analysis. In addition, the origin of fatigue crack in the oversize holes is closer to the hole than in the holes of nominal size, consequently it is investigated that the origin of fatigue crack is intimately associated with the compressive stress distribution which is formulated by the clamping force in both base metal and splice plate.

  • PDF

Experimental Study on the Slip Coefficient with Member Type and Dimensions of High Tension Bolt Hole (부재 및 고장력볼트 구멍치수에 따른 미끄러짐계수의 실험적 연구)

  • Yang, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4277-4283
    • /
    • 2012
  • Slip coefficient, whose value is dependent on the condition of contact surface at the friction joint of high tension bolt, is determined by slip load. Because contact area affects slip load, contact area that varies with bolt hole size is also related to the slip coefficient. In this study, we manufactured 32 specimens and performed bending and tension tests in order to examine changes in slip coefficient and load with material type, bolt diameter, and size of bolt hole. Slip load of specimens with oversize bolt hole had strength that was more than 80% higher than the slip load of specimens with standard bolt hole, and it also exceeded the design slip strength. In addition, we observed significant correlation between net-section ratio and slip ratio of specimens with oversize and standard bolt hole. However, some differences between the specimens are thought to have been caused by reduction in initial axial force of high tension bolt, which is an important parameter of slip coefficient. It is self-evident that increased bolt hole size would lead to decrease in design strength as it reduces both slip coefficient and bolt axial force. Nevertheless, we suggest that some flexibility in regulation of bolt hole, as long as it does not threaten the structural stability, may be a positive factor in terms of workability and efficiency.