• Title/Summary/Keyword: overlapped beam pattern

Search Result 7, Processing Time 0.018 seconds

Positional Uncertainty Reduction of Overlapped Ultrasonic Sensor Ring for Efficient Mobile Robot Obstacle Detection (효율적인 이동로봇의 장애물 탐지를 위한 중첩 초음파 센서 링의 위치 불확실성 감소)

  • Kim, Sung-Bok;Lee, Sang-Hyup
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.3
    • /
    • pp.198-206
    • /
    • 2009
  • This paper presents the reduction of the positional uncertainty of an ultrasonic sensor ring with overlapped beam pattern for the efficient obstacle detection of a mobile robot. Basically, it is assumed that a relatively small number of inexpensive low directivity ultrasonic sensors are installed at regular spacings along the side of a circular mobile robot with their beams overlapped. First, for both single and double obstacles, we show that the positional uncertainty inherent to an ultrasonic sensor can be reduced using the overlapped beam pattern, and also quantify the relative improvement in positional uncertainty. Second, given measured distance data from one or two ultrasonic sensors, we devise the geometric method to determine the position of an obstacle with respect to the center of a mobile robot. Third, we examine and compare existing ultrasonic sensor models, including Gaussian distribution, parabolic distribution, uniform distribution, and impulse, and then build the sensor model of overlapped ultrasonic sensors, adequate for obstacle detection in terms of positional uncertainty and computational requirement. Finally, through experiments using our prototype ultrasonic sensor ring, the validity of overlapped beam pattern for reduced positional uncertainty and efficient obstacle detection is demonstrated.

  • PDF

Design of Overlapped Ultrasonic Sensor Ring and Its Application to Obstacle Detection (중첩 초음파 센서 링의 설계 및 장애물 탐지에의 응용)

  • Kim, Sung-Bok;Lee, Sang-Hyup
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.1
    • /
    • pp.63-73
    • /
    • 2010
  • This paper presents the optimal design method of an overlapped ultrasonic sensor ring for reduced positional uncertainty, and its application to the obstacle detection with improved resolution. Basically, it is assumed that a set of ultrasonic sensors are installed to form a circle at regular intervals with their beams overlapped. First, exploiting the overlapped beam pattern, the positional uncertainty inherent to an ultrasonic sensor is shown to be significantly reduced. Second, for an ideal ultrasonic sensor ring of zero radius, the effective beam width is defined to represent the positional uncertainty, and the optimal number of ultrasonic sensors required for minimal effective beam width is obtained. Third, for an actual ultrasonic sensor ring of nonzero radius, the design index is defined to represent the degree of positional uncertainty, and an optimal design of an overlapped ultrasonic sensor ring consisting of commercial ultrasonic sensors with low directivity is given. Fourth, given measured distances from ultrasonic sensors, the geometric method is described to compute the obstacle position with reference to the center of a mobile robot. Finally, through experiments using our overlapped ultrasonic sensor ring prototype, the validity and performance of the proposed method is demonstrated.

Optimal Design of Overlapped Ultrasonic Sensor Ring for High Performance Obstacle Detection Using Effective Beam Overlap (효과적인 빔 폭 중첩을 이용한 고성능 장애물 탐지용 중첩 초음파 센서 링의 최적 설계)

  • Kim, Sung-Bok;Kim, Hyun-Bin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.67-75
    • /
    • 2011
  • This paper presents the systematic optimal design of an overlapped ultrasonic sensor ring for high performance obstacle detection using effective beam overlap. Basically, a set of low directivity ultrasonic sensors of the same type are arranged in a circle at regular intervals with their beams overlapped. First, both real and simplified beam patterns of an ultrasonic sensor and several sensor models for obstacle position estimation within its beam pattern are introduced. Second, the obstacle detection range of an overlapped ultrasonic sensor ring and its simple sensor model for obstacle position estimation are described. Third, for both conic and non-conic shaped beam pattern, the design indices of an overlapped ultrasonic sensor ring for minimal positional uncertainty in obstacle detection are defined. Fourth, the constraints imposed on the structural parameters of an overlapped ultrasonic sensor ring to guarantee non empty beam overlap and to avoid excessive beam overlap are derived. Fifth, the optimal number of ultrasonic sensors for a given radius of an overlapped ultrasonic sensor ring and the optimal radius of an overlapped ultrasonic sensor ring are determined. Throughout this paper, the MA40B8 from Murata Inc. is taken as a representative commercial low directivity ultrasonic sensor.

Sidelobe Cancellation Using Difference Channels for Monopulse Processing (모노펄스 처리용 차 채널을 이용한 부엽 잡음재머 제거)

  • Kim, Tae-Hyung;Choi, Dae-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.5
    • /
    • pp.514-520
    • /
    • 2015
  • Sidelobe canceller(SLC) requires main beam pattern(SUM beam) and auxiliary beam patterns for rejection of sidelobe noise jammer. For best performance of sidelobe noise jamming cancellation of adaptive SLC, gain dominant region of each auxiliary beam pattern shall not be overlapped one another in elevation/azimuth regions of sidelobe of main beam, and beam patterns of auxiliary channels should have low gains in regions of mainlobe of main beam. In the monopulse radar, the difference beam patterns for monopulse processing have these properties. This paper proposes the method using data from the difference channel for monopulse processing as data from auxiliary channel for sidelobe cancellation. For the proposed SLC, the results of simulation and performance analysis was presented. If the proposed method is used in the monopulse radar, SLC can be constructed by using basic SUM and difference channels without extra channel composition.

Design of Dual-band Microstrip Antenna for ISM Bandwidth using Cross Patch (십자형 패치를 이용한 ISM 대역용 이중대역 마이크로스트립 안테나 설계)

  • 박기동;정문숙;임영석
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.241-245
    • /
    • 2002
  • Dual-band microstrip antenna is designed for industrial-scientific-medical(ISM) band of 2.4㎓ and 5.8㎓ using finite-difference time-domain method(FDTD). Cross Patch fed by aperture in the ground plane of microstrip line is proposed as radiation element of antenna, which is 2 rectangular Patch is overlapped. To design antenna, change of input impedance by aperture and stub length change is examined. And it is investigated that center frequency and -10 ㏈ bandwidth by Length of radiation element and width change. Experimental result about reflection Loss confirmed that agree well with analysis results of FDTD and IE3D, And -3 ㏈ beam width, front to back ratio and gain in frequency 2.43㎓ and 5.79㎓ is presented by measuring radiation Pattern of antenna.

  • PDF

Dual-Band Microstrip Antenna for ISM Band using Aperture Coupled Cross Patch (개구 결합된 십자형 패치를 이용한 ISM 대역용 이중대역 마이크로스트립 안테나)

  • 박기동;정문숙;임영석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.479-488
    • /
    • 2003
  • Dual-band microstrip antenna is designed for industrial-scientific-medical(ISM) band of 2.4 GHz and 5.8 GHz using finite-difference time-domain method(FDTD). Cross patch 130 by aperture in the ground plane of microstrip line is proposed as radiation element of antenna which is 2 rectangular patch is overlapped. To design antenna, change of input impedance is examined by length change of aperture and stub. And center frequency and - 10 dB bandwidth are investigated by change of length and width in radiation element. Measured result about reflection loss confirm that agree well with simulation results of FDTD and IE3D. And 3 dB beam width, front to back ratio and maximum gain is presented by measuring radiation pattern of antenna in frequency 2.43 GHz and 5.79 GHz.

Evaluation of Mechanical Joint Structural Performance through Actual Performance Testing of PC Connections (PC 접합부의 실물 성능실험을 통한 기계식이음 구조성능 평가)

  • Kim, Jae Young;Kim, Yong Nam;Seo, Min Jung;Kim, Beom Jin;Kim, Sung Jig;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.129-139
    • /
    • 2024
  • In this study, the SBC system, a new mechanical joint method, was developed to improve the constructability of precast concrete (PC) beam-column connections. The reliability of the finite element analysis model was verified through the comparison of experimental results and FEM analysis results. Recently, the intermediate moment frame, a seismic force resistance system, has served as a ramen structure that resists seismic force through beams and columns and has few load-bearing walls, so it is increasingly being applied to PC warehouses and PC factories with high loads and long spans. However, looking at the existing PC beam-column anchorage details, the wire, strand, and lower main bar are overlapped with the anchorage rebar at the end, so they do not satisfy the joint and anchorage requirements for reinforcing bars (KDS 41 17 00 9.3). Therefore, a mechanical joint method (SBC) was developed to meet the relevant standards and improve constructability. Tensile and bending experiments were conducted to examine structural performance, and a finite element analysis model was created. The load-displacement curve and failure pattern confirmed that both the experimental and analysis results were similar, and it was verified that a reliable finite element analysis model was built. In addition, bending tests showed that the larger the thickness of the bolt joint surface of the SBC, the better its structural performance. It was also determined that the system could improve energy dissipation ability and ductility through buckling and yielding occurring in the SBC.