• Title/Summary/Keyword: overlaid cell

Search Result 22, Processing Time 0.016 seconds

Capacity Variation of a Microcell due to Power Control Error in and Overlaid Macrocell/Microcell CDMA System (매크로셀내에 마이크로셀이 중첩된 CDMA 시스템에서 전력제어오차로 의한 마이크로셀의 용량 변화)

  • 강희곡;김영철;노재성;조성준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.1
    • /
    • pp.8-17
    • /
    • 2000
  • The BER performance and the capacity variation of a microcell due to power control error(PCE) is analyzed on service types(data and voice, respectively) for the reverse link of an overlaid cell CDMA system. The procedure of analysis is followed as: First, we calculate BER performance according to PCE. Next, we find the minimum SNR for voice service, BER=TEX>$10^{-3}$, and data service, BER=TEX>$10^{-5}$. Then, according to the calculated SNR, we find the maximum capacity of a microcell and macrocell and the capacity of a microcell where interference is considered is found and analyzed with that in perfect power control. We get to the results as follows. The BER performance in 1 dB PCE is similar to that in perfect power control, however, with a increase in PCE, the BER performance is largely degraded. In terms of capacity, it is shown that if the PCE is equal or less than 2 dB, the effect of the PCE on voice service is more than that on data service, but if the PCE is equal or more than 3 dB, effect of the PCE on data service is more than that on voice. Besides, if the PCE is equal or less than 2 dB, both PCE and interference should be considered to calculate the capacity of a microcell, but if the PCE is equal or more than 3 dB, interference can be negligible since the effect of PCE is much stronger than that of interference. Therefore, the microcell should be located where $R_d$, the ratio of a microcell to a macrocell radius, is equal to 0.1, and d, the ratio of the distance between a microcell and a macrocell to the macrocell radius, is equal or more than 0.5, in order to obtain a appropriate microcell capacity against interference. If $\sigma$ is adjusted to less than 2 dB, we may get equal or more than 70% of the maximum microcell capacity.

  • PDF

Protoplast Formation and Regeneration of Bacillus strains producing biopolymer (Biopolymer 생산성 Bacillus속 균주의 원형질체 형성과 재생)

  • Yim, Moo-Hyun;Kim, Seong-Ho
    • Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.20-28
    • /
    • 1999
  • To improve Bacillus strains producing biopolymer, conditions for protoplast formation and regeneration were investigated in biopolymer producing Bacillus subtilis K-1 and lactose utilizing Bacillus coagulans. Bacillus subtilis K-1 mutant (SM-2) and Bacillus coagulans mutants (CM-12) were marked auxotrophic and antibiotics-resistant (SM-2) and an antibiotics-resistant mutants, respectively. To formate protoplasts derived from the mutants, conditions were established as follows. For B. subtilis mutant SM-2, its culture in mid-logarithmic phase was added with penicillin G (1.0 unit/ml) and further reacted for 1.5 hr. Cells were collected and then treated in lysis fluid (pH 7.0) containing 0.4 M sucrose and lysozyme $25\;{\mu}g/ml$ for 40 min at $37^{\circ}$. Protoplast formation was very successful (99.6%) and the ratio of cell wall regeneration was 2.4%. For Bacillus coagulans mutant CM-12, its mid-logarithmic phase culture was treated with penicillin G (0.3 unit/ml) and glycine (0.5%) for 1hr. Cells were collected and then resuspended in lysis buffer (pH 7.0) containing 0.6 M lactose and lysozyme $(300\;{\mu}g/ml)$ for 30 min at $37^{\circ}$. Protoplast formation was also successful (90.8%) and cell wall regeneration ratio was similar to SM-2 (2.2%). To improve regeneration frequency, regeneration medium was obtained as followed condition,. Cell wall regeneration was improved 2-4 folds with 5.1% for B. subtilis SM-2 and 10.3% for B. coagulans CM-12 when protoplasts mixed with soft top agar(0.4%) was overlaid onto trypticase soy broth medium containing 0.4 M sucrose, 0.7% casamino acid, 1% PVP, 25 mM $MgCl_2,\;25\;mM\;CaCl_₂$ and 1.5% agar.

  • PDF