• Title/Summary/Keyword: overheating

Search Result 259, Processing Time 0.026 seconds

An Analysis of the Thermal Flow Characteristics in Engine-Room and VTRU in accordance with Application of Thermoelectric Device Cooling System to Prevent Overheating of the Korean Navy Ship VRTU (해군 함정 VRTU의 과열방지를 위한 열전소자 냉각장치의 적용에 따른 기관실 및 VRTU 내부 열 유동특성 분석)

  • Jung, Young In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.610-616
    • /
    • 2020
  • This study conducted joint research with the Navy logistics command ship technology research institute to resolve the occurrence of naval vessel's high-temperature warning and equipment shutdown caused by VRTU overheating during summer operation and the dispatch of troops to equatorial regions. The cooling effect was checked according to the installation of a thermoelectric device cooling system, and heat flow and heat transfer characteristics inside VRTU was analyzed using Computational Fluid Dynamics. In addition, the temperature distribution inside the engine room was assessed through interpretation, and the optimal installation location to prevent VRTU overheating was identified. As a result, the average volume temperature inside the VRTU decreased by approximately 10 ℃ with the installation of the cooling system, and the fan installed in the cooling system made the heat circulation smooth, enhancing the cooling effect. The inside of the engine room showed a high-temperature distribution at the top of the engine room, and the end of the HVAC duct diffuser showed the lowest temperature distribution.

Development of Data-driven Thermal Protection Algorithm for Protecting Overheating of Motor in the Sunroof System (선루프 모터 과열 방지를 위한 데이터 기반 열 차폐 알고리즘 개발)

  • Kim, Hyun-Hee;Park, Seong-U;Lee, Kyung-Chang;Hwang, Yeong-Yeun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.4
    • /
    • pp.223-230
    • /
    • 2016
  • This paper presents data-driven thermal protection algorithm for preventing overheating of automotive sunroof motor. When a sunroof motor operates abnormally, its coil is overheated and it is failed. Besides, drivers and passengers are damaged. Hence, the sunroof motor observes its temperature and will be stoped when its temperature reach a predefined level. In order to implement low-cost thermal protection function, we drew a knowledge-based temperature increasing and decreasing curve from the result of experimental test. And then, we implemented data-driven thermal protection algorithm which prevents motor's On/Off operation according to motor operating voltage and motor speed. Finally, we implemented experimental test bed and evaluated its feasibility.

Survey evaluation of thermal boundary condition in the inside and outside of double skin facade

  • Shin, Hyun-Cheol;Jang, Gun-Eik
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.29-35
    • /
    • 2015
  • Purpose: Double skin facade is a representative advantageous passive technology of building skin in the aspect of energy saving and environment improvement, reduces heat loss with buffer space in winter season and enhances indoor air and comfort of residents by activating natural ventilation in mid-season. However, in summer season, temperature increase in the intermediate space due to solar energy from exterior transparent skin could be a potential problem; also, relatively weak buoyancy of air caused by low density difference between double-skin facade could increase cooling load as air of intermediate space in high temperature hangs. However, proof data is insufficient to objectify such phenomenon. Method: In this study, researchers surveyed air temperature of intermediate space and airflow and diagnosed its cause targeting on applied multistory facade in the building which gives thermal uncomfort to residents. Also, the researchers produced Solar-air heat transfer coefficient meter, measured thermal boundary condition of double-skin facade, and presented the result of measurement as an objectified verification material regarding overheating phenomenon in the intermediate space of double-skin facade in summer season. Result: Inefficient condition was verified that total heat increases and overheating due to insufficient natural ventilation in multistory facade. In addition, logic behind preceding research was objectified and verified regarding high temperature phenomenon in the intermediate space which could increase cooling load in summer season.

Design and Analysis of Rolled Rotor Switched Reluctance Motor

  • Eyhab, El-Kharashi
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.472-481
    • /
    • 2006
  • In the conventional SRM with multi-rotor teeth, the air gap must be very small in order to drive the SRM in the saturation region that is necessary for high output torque. However, this leads to the problem of overheating; particularly in the case of a small-size SRM This paper discusses the design of a new type of SRM, namely the rolled rotor SRM. This new type does not require more than a single region of a very small airgap. This solves the overheating problem in the small size SRM. Moreover, the use of the rolled rotor, instead of the conventional toothed rotor, grades the airgap region in a fashion that gives a smooth variation in the reluctance and smooth shapes of both current and torque. The latter functional behavior is required in many applications such as servo applications. The paper first addresses general design steps of the rolled rotor SRM then proceeds to the simulation results of the new SRM in order to evaluate the advantages gained from the new design. In addition, this paper compares the torque ripples obtained from the new design to its equivalent conventional one.

The effect of low-speed drilling without irrigation on heat generation: an experimental study

  • Oh, Ji-Hyeon;Fang, Yiqin;Jeong, Seung-Mi;Choi, Byung-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.42 no.1
    • /
    • pp.9-12
    • /
    • 2016
  • Objectives: In this study we evaluated heat generation during the low-speed drilling procedure without irrigation. Materials and Methods: Ten artificial bone blocks that were similar to human D1 bone were used in this study. The baseline temperature was $37.0^{\circ}C$. We drilled into 5 artificial bone blocks 60 times at the speed of 50 rpm without irrigation. As a control group, we drilled into an additional 5 artificial bone blocks 60 times at the speed of 1,500 rpm with irrigation. The temperature changes during diameter 2 mm drilling were measured using thermocouples. Results: The mean maximum temperatures during drilling were $40.9^{\circ}C$ in the test group and $39.7^{\circ}C$ in the control group. Even though a statistically significant difference existed between the two groups, the low-speed drilling did not produce overheating. Conclusion: These findings suggest that low-speed drilling without irrigation may not lead to overheating during drilling.

Electrical Fire Detection System using Temperature and Current Detectors (열.전류 감지기를 이용한 전기화재감지시스템)

  • Kim, Doo-Hyun;Kim, Sung-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.3 s.81
    • /
    • pp.7-12
    • /
    • 2007
  • This paper presents the development of an electrical fire detection system using digital temperature and current detectors in order to sound for electrical fire in advance. As the demand for electricity is increasing and industrial facilities are getting more complex and larger in size, the losses of human life and property are on the increase by electrical fires. In order to prevent electrical fires, it is required to find out fire signatures, or electric signal of the overcurrent and overheating. Therefore, in this paper, developed is an electrical fire detection system based on the detection of signal for overcurrent and overheating to prevent electrical accidents in advance that happen in electrical wires. The developed system gives an alarm by computer monitor, speaker system and mobile phone before electrical fires occur and give severe damages to human beings and properties, and the system can be implemented and supplied for business and residental buildings at a low price. The usefulness and validity of the system, also, verified in this paper by case study and experiments.

A Study on the Analysis of Fire Mechanisms in Electronic Products due to Failure and Malfunction of Thermostats Through Fire Cases and Reproduction Experiments (화재사례 및 재현실험을 통한 온도조절장치 고장 및 오동작으로 인한 전자제품 화재 메커니즘 분석)

  • Jeong-il Lee;Jong-Hwa Im
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.1
    • /
    • pp.31-38
    • /
    • 2024
  • In this paper, as there are many cases of fires occurring due to the failure or inoperability of the thermostat of electronic products, the purpose is to test and analyze the risks and probabilities through fire cases and reproduction experiments, and suggest countermeasures. Among electronic products, water purifiers are composed of a refrigerant system with a compressor to make cold water, a heating device to make hot water, and an electric device used as an energy source. Due to the nature of the water purifier manufacturing, these devices are subject to a lot of moisture and dust. etc. exist in large quantities and use electrical energy, so there is a possibility of fire due to short circuit in the wire, electrical abnormal overheating (tracking phenomenon) in the thermostat, electronic board, starting relay, etc., and overheating of the heating device (Band Heater). there is. Therefore, in order to prevent fires from these devices, a system to remove foreign substances inside the water purifier is necessary, the use of heat-resistant (fire-resistant) wires for electrical devices is essential, and the use of non-combustible materials (semi-combustible materials) for each part is necessary to prevent fire. The risk must be eliminated through prevention and combustion expansion prevention devices.

A study of geothermal heat dump for solar collectors overheat protection (태양열 집열관 과열방지를 위한 지중열교환기 연구)

  • Hwang, Hyun-Chang;Chi, Ri-Guang;Lee, Kye-Bock;Rhi, Seok-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.616-622
    • /
    • 2016
  • The heating load using solar hot water is lower in summer than in the other seasons. This decreased heating load leads to the overheating solar collectors and related components. To prevent overheating of the solar collectors, air cooling and shading shields were used. On the other hand, it requires additional mechanical components, and reduces the system reliability. The geothermal heat dump system to release the high temperature heat (over $150^{\circ}C$) transferred from the heat pipe solar collectors was investigated in the present study. Research on the heat dump to cool the solar collector is rare. Therefore, the present study was carried out to collect possible data of a geothermal heat dump to cool the solar collector. A helical type geothermal heat exchanger was buried at a 1.2m depth. Experimentally and numerically, the geothermal heat dump was investigated in terms of the effects of parameters, such as the quantity of solar radiation, aperture area of the collector and the mass flow rate. A pipe length of 50m on the geothermal heat exchanger was suitable with a 0.33 kg/s flow rate. The water reservoir was a possible co-operation solution linked to the geothermal heat exchanger.

Research on Overheating Prediction Methods for Truck Braking Systems (화물차의 제동장치에서 발생하는 과열 예측방안 연구)

  • Beom Seok Chae;Young Jin Kim;Hyung Jin Kim
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.54-61
    • /
    • 2024
  • Recently, due to the increase in domestic and international online e-commerce platforms and the increase in container traffic at domestic ports, the operating ratio of large trucks has increased, and the number of truck fires is continuously increasing. In particular, spontaneous combustion is the most common cause of truck fires. Various academic approaches have been attempted to prevent truck fires, but due to the lack of research on the spontaneous tire ignition phenomenon that occurs during braking, this research directly designed and manufactured an experimental device to establish an environment similar to the braking system of a truck. A non-contact temperature sensor was installed on the brake device of the experimental device to collect temperature data generated from the brake device. Based on the data collected from the temperature sensor of the brake device and the temperature sensor on the tire surface, the ARIMA model among the time series prediction models was used to Appropriate parameters were selected to suit the temperature change trend, and as a result of comparing and analyzing the measured and predicted data, an accuracy of over 90% was obtained. Based on this, a plan was proposed to reduce the rate of fires in trucks by providing real-time warnings and support for truck drivers to respond to overheating phenomena occurring in the braking system.

A Study on the NGR problem for harmonic in Distribution system (배전계통의 고조파에 의한 NGR의 문제점에 관한 연구)

  • Park Hee Chul;Cho Nam Hun;Kang Moon Ho;Wang Young peel
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.480-482
    • /
    • 2004
  • This paper presents a study on the NGR problem for harmonic in distribution systems. Overheating of NGR (Neutral Ground reactor), by neutral current in distribution system, is important cause of transformer breakdown of substation. Countermeasures about zero-sequence component harmonic in neutral line are required.

  • PDF