• Title/Summary/Keyword: overflow nappe

Search Result 5, Processing Time 0.017 seconds

Flow Characteristics in Nappe Flow over Stepped Drop Structure

  • Kim, Jin Hong;Woo, Hyo Seop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.54-61
    • /
    • 2004
  • This paper deals with flow characteristics on the air entrainment and the energy dissipation in nappe flow over the stepped drop structure. Nappe flow occurred at low flow rates and for relatively large step height Dominant flow features include an air pocket, a free-falling nappe impact and a subsequent hydraulic jump on the downstream step. Air entrainment occurred from the step edge, through a free-falling nappe impact and a hydraulic jump. Most energy was dissipated by nappe impact and in the downstream hydraulic jump. It was related with the step height and the overflow depth, but not related with step slope. The stepped drop structure was found to be effcient for water treatment and energy dissipation associated with substantial air entrainment.

  • PDF

AIR ENTRAINMENT AND ENERGY DISSIPATION AT STEPPED DROP STRUCTURE

  • Kim Jin Hong
    • Water Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.195-206
    • /
    • 2004
  • This paper deals with oxygen transfer by air entrainment and energy dissipations by flow characteristics at the stepped drop structure. Nappe flow occurred at low flow rates and for relatively large step height. Dominant flow features included an air pocket, a free-falling nappe impact and a subsequent hydraulic jump on the downstream step. Most energy was dissipated by nappe impact and in the downstream hydraulic jump. Skimming flow occurred at larger flow rates with formation of recirculating vortices between the main flow and the step comers. Oxygen transfer was found to be proportional to the flow velocity, the flow discharge, and the Froude number. It was more related to the flow discharge than to the Froude number. Energy dissipations in both cases of nappe flow and skimming flow were proportional to the step height and were inversely proportional to the overflow depth, and were not proportional to the step slope. The stepped drop structure was found to be efficient for water treatment associated with substantial air entrainment and for energy dissipation.

  • PDF

A Numerical Simulations on the Flow over Ogee Spillway with Pier (교각이 설치된 월류형 여수로에서의 흐름에 대한 수치모의)

  • Kim, Dae-Geun;Lee, Jae-Hyung;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.5
    • /
    • pp.363-373
    • /
    • 2004
  • This study analyzed the hydrodynamic flow behavior on a standard ogee spillway with pier by using FLOW-3D. The simulation results were compared with the experiment data of U.S. Army Corps of Engineers - Waterways Experiment Station (WES) and also compared with 2-dimensional simulation results on a spillway without pier. In particular, the characteristics of the distribution of the overflow nappe and pressure in a spillway with pier were investigated in detail. As for the results of the simulation on the flow rate, overflow nappe, and pressure, although there were a few differences in the experiment results of WES, they were identical in most cases in terms of trend. Summarizing the major flow behavior in a standard ogee spillway with pier, first, the water stage at the center line of the bay was higher than that at the side of the bay along the pier. Second, when the water head was larger than the design head of the spillway, at the upstream area of the weir crest, the absolute magnitude of negative pressure occurred highest at the side of the bay along the pier. On the other hand, at the downstream area of the weir crest, the absolute magnitude of negative pressure occurred highest at the centerline of the bay.

Increase of Spillway Discharge by Labyrinth Weir (래버린스위어에 의한 여수로 배제유량 증대)

  • Seo, Il Won;Song, Chang Geun;Park, Se Hoon;Kim, Dong Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.11-20
    • /
    • 2008
  • The spillway type of small and midsize dams in Korea is almost overflow weir. To examine flood control capacity of overflow spillway, FLOW-3D was applied to Daesuho dam and analysis was focused on the discharge of dam spillway by changing weir shape. Overflow phases and discharges of linear labyrinth weir and curved labyrinth weir were compared with those of existing linear ogee weir. Hydraulic model experiment was performed to verify numerical result. Verification results showed that overflow behaviors and flow characteristics in the side channel by hydraulic model experiment and numerical simulation are well matched, and water surface elevation at side wall coincides with each other. When the reservoir elevation was increased up to design flood level, in case of the linear ogee weir the flow over the crest ran through smoothly in the side channel, whereas in cases of linear labyrinth weir and curved labyrinth weirs, the flow discharge was increased by 40 cms, and the flow over the weir crest, rotating counter-clockwise, was submerged in the side channel. The results of the water level-discharge curve revealed that labyrinth weir can increase discharge by 71% compared to the discharge of linear ogee weir at low reservoir elevation since it can have longer effective length. But as water surface elevation rises, the slope of water level-discharge curve of labyrinth weir becomes milder by submergence and nappe interference in the side channel.

A Study on Flood Discharge Capacity and Hydraulic Characteristic of Labyrinth Weir as a Side-Channel Spillway (래버린스 웨어를 적용한 측수로형 여수로의 홍수배제능력 및 수리학적 특성 연구)

  • Park, Sae-Hoon;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.1
    • /
    • pp.65-74
    • /
    • 2008
  • The small and medium sized dams have the fill dam type of a lot of occasions, which are often weak in cases of major floods. For this reason, although a countermeasure is in great need, due to the importance of the facilities and financial situations, no direct safety measures have been taken. In this study, in order to minimize construction expenditure for practical safety measures in cases of major floods, the overflow section of spillway has been analyzed focusing on how the overflow capacity will increase in the case of partially rebuilding a part of the overflow section of spillway favorable for hydraulic conditions. The Labyrinth weir and movable weir was chosen for reconstruction models of the overflow section. Moreover, for analyzing the after-effects of the reconstruction, a small scale dam was temporarily chosen for various experiments such as the hydraulic model testing and the three dimension numerical evaluation through the use of Flow-3D.