• Title/Summary/Keyword: overall structural damage

Search Result 119, Processing Time 0.025 seconds

Bend-Twist Coupling Behavior of 10 MW Composite Wind Blade (10 MW급 복합재 풍력 블레이드의 굽힘-비틀림 커플링 거동 연구)

  • Kim, Soo-Hyun;Shin, Hyungki;Bang, Hyung-Joon
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.369-374
    • /
    • 2016
  • In this study, a structural optimal design of 10 MW composite blade was performed using bend-twist coupled(BTC) design concept. Bend-twist coupling of blade means the coupling behavior between the bending and torsional deflections due to the composite lamina with fiber angle biased from the blade longitudinal axis. This can potentially improve the overall performance of composite blade and reduce the dynamic loading. Parametric studies on layup angle, thickness and area of off-axis carbon UD were conducted to find the optimum coupling effect with weight reduction. Comparing the results of fatigue load analysis between conventional model and BTC applied model, the damage equivalent load(DEL) of blade root area were decreased about 3% in BTC model. To verify the BTC effect experimentally, a 1:29 scaled model was fabricated and the torsion at the tip under deflection behavior of blade stiffener model was measured by static load test.

A Case Study on Partial Explosive Demolition of a Large-Section Turbine Foundation Structure (대단면 터빈 기초 구조물의 부분발파해체 시공사례)

  • Park, Hoon;Suk, Chul-Gi;Nam, Sung-Woo;Noh, You-Song
    • Explosives and Blasting
    • /
    • v.34 no.1
    • /
    • pp.19-28
    • /
    • 2016
  • The number of industrial structures that must be demolished due to functional and structural deterioration has been increased. There is an increasing application of explosive demolition or explosive demolition combined with mechanical demolition to minimize temporal and spatial environmental hazardous factors created during the process of demolition. In this case study, to demolish the turbine foundation structure, which is a large-section reinforced concrete structure, the parital explosive demolition thchnique was conducted. As a result of the partial explosive demolition, the overall crushing of the blasting sections of beam-column joints structure with haunched beams and second-floor columns about the turbine foundation was satifactory, and the explosive demolition was completed without causing any damage to surrounding facilities.

Design of a decoupled PID controller via MOCS for seismic control of smart structures

  • Etedali, Sadegh;Tavakoli, Saeed;Sohrabi, Mohammad Reza
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1067-1087
    • /
    • 2016
  • In this paper, a decoupled proportional-integral-derivative (PID) control approach for seismic control of smart structures is presented. First, the state space equation of a structure is transformed into modal coordinates and parameters of the modal PID control are separately designed in a reduced modal space. Then, the feedback gain matrix of the controller is obtained based on the contribution of modal responses to the structural responses. The performance of the controller is investigated to adjust control force of piezoelectric friction dampers (PFDs) in a benchmark base isolated building. In order to tune the modal feedback gain of the controller, a suitable trade-off among the conflicting objectives, i.e., the reduction of maximum modal base displacement and the maximum modal floor acceleration of the smart base isolated structure, as well as the maximum modal control force, is created using a multi-objective cuckoo search (MOCS) algorithm. In terms of reduction of maximum base displacement and story acceleration, numerical simulations show that the proposed method performs better than other reported controllers in the literature. Moreover, simulation results show that the PFDs are able to efficiently dissipate the input excitation energy and reduce the damage energy of the structure. Overall, the proposed control strategy provides a simple strategy to tune the control forces and reduces the number of sensors of the control system to the number of controlled stories.

Effect of Earthquake characteristics on seismic progressive collapse potential in steel moment resisting frame

  • Tavakoli, Hamid R.;Hasani, Amir H.
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.529-541
    • /
    • 2017
  • According to the definition, progressive collapse could occur due to the initial partial failure of the structural members which by spreading to the adjacent members, could result in partial or overall collapse of the structure. Up to now, most researchers have investigated the progressive collapse due to explosion, fire or impact loads. But new research has shown that the seismic load could also be a factor for initiation of the progressive collapse. In this research, the progressive collapse capacity for the 5 and 15-story steel special moment resisting frames using push-down nonlinear static analysis, and nonlinear dynamic analysis under the gravity loads specified in the GSA Guidelines, were studied. After identifying the critical members, in order to investigate the seismic progressive collapse, the 5-story steel special moment resisting frame was analyzed by the nonlinear time history analysis under the effect of earthquakes with different characteristics. In order to account for the initial damage, one of the critical columns was weakened at the initiation of the earthquake or its Peak Ground Acceleration (PGA). The results of progressive collapse analyses showed that the potential of progressive collapse is considerably dependent upon location of the removed column and the number of stories, also the results of seismic progressive collapse showed that the dynamic response of column removal under the seismic load is completely dependent on earthquake characteristics like Arias intensity, PGA and earthquake frequency contents.

Numerical and experimental study of the nested-eccentric-cylindrical shells damper

  • Reisi, Alireza;Mirdamadi, Hamid Reza;Rahgozar, Mohammad Ali
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.637-648
    • /
    • 2020
  • In this study, a new steel cylindrical shell configuration of the dissipative energy device is proposed to improve lateral ductility and to reduce the damage of the structures against seismic forces. Four nested-eccentric- cylindrical shells are used to constructing this device; therefore, this proposed device is named nested-eccentric-cylindrical shells damper (NECSD). The particular configuration of the nested-eccentric-cylindrical shells is applied to promote the mechanical characteristics, stability, and overall performance of the damper in cyclic loads. Shell-type components are performed as a combination of series and parallel non-linear springs into the in-plan plastic deformation. Numerical analysis with respect to dimensional variables are used to calculate the mechanical characteristics of the NECSD, and full-scale testing is conducted for verifying the numerical results. The parametric study shows the NECSD with thin shells were more flexible, while devices with thick shells were more capacious. The results from numerical and experimental studies indicate that the NECSD has a stable behavior in hysteretic loops with highly ductile performance, and can provide appropriate dissipated energy under cyclic loads.

Seismic behavior of steel frames with replaceable reinforced concrete wall panels

  • Wu, Hanheng;Zhou, Tianhua;Liao, Fangfang;Lv, Jing
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1055-1071
    • /
    • 2016
  • The paper presents an innovative steel moment frame with the replaceable reinforced concrete wall panel (SRW) structural system, in which the replaceable concrete wall can play a role to increase the overall lateral stiffness of the frame system. Two full scale specimens composed of the steel frames and the replaceable reinforced concrete wall panels were tested under the cyclic horizontal load. The failure mode, load-displacement response, deformability, and the energy dissipation capacity of SRW specimens were investigated. Test results show that the two-stage failure mode is characterized by the sequential failure process of the replaceable RC wall panel and the steel moment frame. It can be found that the replaceable RC wall panels damage at the lateral drift ratio greater than 0.5%. After the replacement of a new RC wall panel, the new specimen maintained the similar capacity of resisting lateral load as the previous one. The decrease of the bearing capacity was presented between the two stages because of the connection failure on the top of the replaceable RC wall panel. With the increase of the lateral drift, the percentage of the lateral force and the overturning moment resisted by the wall panel decreased for the reason of the reduction of its lateral stiffness. After the failure of the wall panel, the steel moment frame shared almost all the lateral force and the overturning moment.

Biophysical and mechanical response of keratinous fibres to changes in temperature, humidity and damage

  • Skinner, Richard;Tucker, Ian;Pudney, Paul;Hannah, Teresa;Leray, Yann;Matisson, Gregory;Bell, Fraser;Devine, Karen;Carpenter, P.;Oikawa, T.;Cornwell, Paul
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.200-200
    • /
    • 2003
  • Intact mammalian hair and wool fibres are multi-compartmental composite materials consisting of a sulphur-rich outer protective cuticle layer surrounding elongated, highly keratinized, cortex cells. The cortex cells themselves are made up of crystalline, filamentous, low-sulphur a-helical keratin molecules embedded in a matrix of highly cross-linked, globular high-sulphur keratins. It is the structurally organised and highly disulphide cross-linked nature of these materials that provides them with their remarkable mechanical properties. However these mechanical properties are sensitive to environmental conditions such as water content, temperature and chemical treatment and the importance of their ultra-structural arrangements to overall mechanical properties in different environments is still not fully understood.(omitted)

  • PDF

Cyclic performance of RC beam-column joints enhanced with superelastic SMA rebars

  • Ghasemitabar, Amirhosein;Rahmdel, Javad Mokari;Shafei, Erfan
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.293-302
    • /
    • 2020
  • Connections play a significant role in strength of structures against earthquake-induced loads. According to the post-seismic reports, connection failure is a cause of overall failure in reinforced concrete (RC) structures. Connection failure results in a sudden increase in inter-story drift, followed by early and progressive failure across the entire structure. This article investigated the cyclic performance and behavioral improvement of shape-memory alloy-based connections (SMA-based connections). The novelty of the present work is focused on the effect of shape memory alloy bars is damage reduction, strain recoverability, and cracking distribution of the stated material in RC moment frames under seismic loads using 3D nonlinear static analyses. The present numerical study was verified using two experimental connections. Then, the performance of connections was studied using 14 models with different reinforcement details on a scale of 3:4. The response parameters under study included moment-rotation, secant stiffness, energy dissipation, strain of bar, and moment-curvature of the connection. The connections were simulated using LS-DYNA environment. The models with longitudinal SMA-based bars, as the main bars, could eliminate residual plastic rotations and thus reduce the demand for post-earthquake structural repairs. The flag-shaped stress-strain curve of SMA-based materials resulted in a very slight residual drift in such connections.

Seismic performance of South Nias traditional timber houses: A priority ranking based condition assessment

  • Sodangi, Mahmoud;Kazmi, Zaheer Abbas
    • Earthquakes and Structures
    • /
    • v.18 no.6
    • /
    • pp.731-742
    • /
    • 2020
  • Due to incessant earthquakes, many historic South Nias traditional timber houses have been damaged while some still stand today. As Nias is part of an extremely active tectonic region and the buildings are getting older by day, it is essential that these unique houses are well maintained and functioning well. A post-earthquake condition assessment was conducted on 2 selected buildings; 'Building A' survived the seismic shakings while 'Building B' got severely damaged. The overall condition assessment of "Building A' was found out to be poor and the main structural members were not performing as intended. In 'Building B', the columns were not well anchored to the ground, no tie beams to tie the columns together, and eventually, the timber columns moved in various directions during the earthquake. The frequent earthquakes along with deterioration due to lack of proper maintenance program are responsible for the non-survival of the buildings. Thus, a process guideline for managing the maintenance of these buildings was proposed. This is necessary because managing the maintenance works could help to extend the life of the buildings and seek to avoid the need for potentially expensive and disruptive intervention works, which may damage the cultural significance of the buildings.

A Study on Improvement of Local Government Disaster Management System in Korea - Focused on Strengthening the Disaster Management Capacity of Local Government - (지방자치단체 재난관리체계 개선에 관한 연구 - 지방자치단체의 재난관리 역할 강화를 중심으로 -)

  • Hong, Ji-Wan
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.9
    • /
    • pp.21-30
    • /
    • 2018
  • This study aims for improving the system in Disaster Management of Local Government. In addition, the overall disaster management system was compared to the effectiveness of the disaster prevention system and reliability, and problems and improvement points were derived. The disaster management system in Korea has a structure that promptly investigates and restores damage by a simple procedure. Korea disaster management system manages information on top-down structural disasters through the flow of prevention, preparation, response, and recovery. The process from disaster response to recovery under the leadership of the central disaster safety headquarters is simplified. Disaster management tasks are dispersed among departments, making it difficult to respond promptly. Under the control of the central government, disaster management, such as disaster prevention, investigation, and recovery, are carried out. The disaster management improvement direction of the local government should establish the disaster response system focusing on the local government. Therefore, it is necessary to have budget to operate the organization - centered disaster management budget and the disaster management organization. The disaster response manual should be prepared considering the disaster environment and disaster prevention plan. In order to utilize disaster information, it is necessary to reorganize information system such as integrate and streamline of the private resource database and NDMS.