• Title/Summary/Keyword: overall heat transfer coefficient

Search Result 224, Processing Time 0.028 seconds

A Study on the Heat Storage Characteristics of a Latent Heat Storage Tank with Shell and Tube Type (셀-튜브형 잠열축열조의 축열특성에 관한 연구)

  • 권영만;김경우;모정하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.745-754
    • /
    • 2000
  • An experimental study has been carried out in order to investigate the heat storage characteristics for a latent heat storage tank with horizontal shell and tube type. The heat storage tank consists of cylindrical capsules with a staggered tube bank. The effects of flow rates and initial temperature differences on the melting time and heat storage rates are examined. It is found that the melting time decreases with increase of the flow rates and initial temperature differences. Results also show that the time-averaged overall heat transfer coefficients increase in proportion to the increase of flow rates and initial temperature differences.

  • PDF

Turbulent Flow and Heat Transfer in an Annular Passage with Repeated-Ribbed Roughness on Both Walls (양측벽면에 반복돌출형 거칠기가 있는 이중관통로내의 난류운동과 열전달)

  • 안수환;이윤표
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.26-36
    • /
    • 1996
  • The fully developed turbulent momentum and heat transfer induced by the square-ribbed roughness elements on both the inner and outer wall surfaces in concentric annuli are studied analytically based on a modified turbulence model. The analytical results of the fuid flow are verified by experiment. The experiment is done with a pitot tube and a X-type hot wire anemometer to measure the time mean velocity profiles, zero shear stress positions, maximum velocity positions and friction factors, and etc. shown in Fig.1. The resulting momentum and heat transfer are discussed in terms of various parameters, such as the radius ratio, the relative roughness, the roughness density, Reynolds number, Nusselt bumber and Prand시 number. The study demonstrates that certain artificial roughness elements may be used to enhance heat transfer rates with advantage from the overall efficiency point of view by investigating turbulent flows and heat transfer in Fig.1.

  • PDF

Theoretical Analysis of the Characteristics of Heat Transfer in Cylinder Drum for Paper Dryer (제지건조기용 실린더드럼에서 열전달특성에 관한 이론적 분석)

  • Lee, Ki-Woo;Chun, Won-Pyo;Lee, Kye-Jung;Jung, Seok-Pil
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2082-2087
    • /
    • 2008
  • The heat transfer process from steam to web through the cylinder drum consists of the thermal resistance by condensate thickness. thickness of shell, and the contact resistance between cylinder and web. The most thermal resistance in conventional cylinder drum dryer is generated by condensate, which is increased by the increase on revolution per minute(RPM). Therefore, the increase of RPM for the production enhancement results in the more thermal resistance, and eventually RPM is restricted. In this study, the theoretical analysis on the characteristics of heat transfer in cylinder drum for paper dryer was performed in the stationary state of steam in drum. The overall heat transfer coefficient, steam quantity and heat transfer quantity were predicted by diameter and length of drum, condensate thickness, revolution per minute and steam temperature for experimental apparatus design.

  • PDF

Development of Heat Transfer Predicting Model for Cold forging Steel(SCr420) During Quenching Process (냉간 단조용 SCr420 강의 퀜칭 시 열전달 예측모델 개발)

  • 진민호;장지웅;강성수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.68-71
    • /
    • 2003
  • Heat treatment is one of the critical manufacturing processes that determine the quality of a product. This paper presents experimental and analytical results for the quench of a ring gear in stagnant oil. The goal of this study is to develop heat transfer predicting model in an overall analysis of the quenching process. Thermal conductivities which are dependant on temperatures and convection coefficients which are obtained by inverse method are used to develop the accurate heat transfer model. The results of heat transfer model have a good agreement with experimental results.

  • PDF

Development of Heat Transfer Predicting Model for Cold forging Steel(SCM420) During Quenching Process (냉간 단조용 SCM420 강의 ?칭 시 열전달 예측모델 개발)

  • 진민호;장지웅;김정민;강성수
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.441-448
    • /
    • 2004
  • Heat treatment is one of the critical manufacturing processes that determine the quality of a product. This paper presents experimental and analytical results for the quench of a ring gear in stagnant oil. The goal of this study is to develop heat transfer predicting model in an overall analysis of the quenching process, Thermal conductivities which are dependant on temperatures and convection coefficients which are obtained by inverse method are used to develop the accurate heat transfer model. The results of heat transfer model have a good agreement with experimental results.

Comparative Evaluation on the Deriving Method of the Heat Transfer Coefficient of the C-D Nozzle (축소 확대 노즐의 열전달 해석을 위한 열전달 계수 계산 및 검증)

  • Noh, Tae Won;Roh, Tae-Seong;Lee, Hyoung Jin;Lee, Hyunseob;Yoo, Phil Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.1-11
    • /
    • 2022
  • The heat transfer coefficient on the wall, which is used as a boundary condition in the thermal analysis of general contract-divergent supersonic nozzles, affects the thermal analysis accuracy of the entire nozzle. Accordingly, many methods of deriving a heat transfer coefficient have been proposed. In this study, the accuracy of each method was compared. For this purpose, the heat transfer coefficients were calculated through theoretical-based analogy methods, semi-empirical equations, and CFD simulations for the previously performed heat transfer experiment with an isothermal wall and compared with the experimental results. The results show that the Prandtl-Taylor analogy methods and the CFD results with the k-ω SST turbulence model were in good agreement with the experimental results. Furthermore, the Modified Bartz empirical formula showed an overall over-prediction tendency.

A Study on Heat Transfer Characteristics of Separate Type Heat Pipe with a Rotor (회전자를 갖는 분리형 히트파이프의 열전달특성에 관한 연구)

  • Jun, C.H.;Kim, O.G.
    • Solar Energy
    • /
    • v.20 no.3
    • /
    • pp.75-84
    • /
    • 2000
  • The purpose of this research is to study on the heat transfer characteristics of separate type heat pipe with a rotor. The heat transfer characteristics of the rotor condenser are various on input heat of evaporator, rotational speeds of rotor, and working fluid amount. The results obtained from the study are as follows. 1. Magnetic fluid using seal of the rotor operated in stability by a variation of temperature and rotation speeds. The configuration of magnetic fluid seal assembly was adequate. 2. Steam ejector is effective in recovering working fluid condensate in the rotor. When steam ejector is operating, the heat flux of working fluid does not change, with the wall temperature in the rotor. 3. The optimum design conditions on working fluid amount and rotational speeds are effective in evaporator volume 50%, rotational speeds 200rpm, 300rpm, and operating temperature $80^{\circ}C$. With working fluid amount increasing, overall heat transfer coefficient decreases linearly.

  • PDF

Proposed OHTC Formula for Subsea Pipelines Considering Thermal Conductivities of Multi-Layered Soils (다층 지반의 열전도율을 고려한 해저배관의 총괄열전달계수식 제안)

  • Park, Dong-Su;Shin, Mun-Beom;Seo, Young-Kyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.84-94
    • /
    • 2018
  • Subsea pipelines are designed to transport mixtures of oil, gas, and their associated impurities from a wellhead that can be in excess of approximately $100^{\circ}C$, while the external temperature may be approximately $5^{\circ}C$. Heat can be lost from a subsea pipeline containing a high-temperature fluid to the surrounding environment. It is important that the pipeline be designed to ensure that the heat loss is small enough to maintain sufficient flow from the unwanted deposition of hydrate and wax, which occurs at a critical temperature of about $40^{\circ}C$. Therefore, it is essential to estimate the heat loss of a subsea pipeline in various circumstances. In previous studies, overall heat transfer coefficient(OHTC) formulas were considered only for a single soil type. Thus, it is difficult to characterize the OHTC of the actual seabed with multiple soil layers. In this paper, an OHTC formula that considers multi-layered soils is proposed for more precise OHTC estimation.

Analysis of Heat Transfer of a Magnetic Fluid Seal (자성유체씰의 열전달 해석)

  • Kim, Ock-Hyun;Lee, Hee-Bok;Lee, Min-Ki;Hong, Jeong-Hui;Kwak, Yong-Woon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.365-369
    • /
    • 2010
  • Magnetic fluid seal is characterized by its simple design, low friction and being dustless. Those advantages are deduced from the fact that the sealing element is not a solid such as rubber or plastic but it is a fluid. Those are critical for application to a rotating shaft which is inserted into a vacuum chamber where high level of vacuum and cleanness are required. For the reason the magnetic fluid seal has become a standard for vacuum chambers for semiconductor and LCD processing. It should be noted that its sealing performance is sensitive to temperature. If necessary, water cooling should be considered. Thus anticipation of the temperature distribution of the magnetic fluid seal is important before applying it. In this paper an FEM analysis of the heat transfer has been executed and compared with experimental results. An overall convective heat transfer coefficient has been adopted for the analysis, which results in satisfactory consistency of the theoretical and experimental results.

Heat Transfer Correlations for Air-Water Two-Phase Flow of Different Flow Patterns In a Horizontal Pipe

  • Kim, Dongwoo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1711-1727
    • /
    • 2001
  • Heat transfer coefficient were measured and new correlations were developed for two-phase heat transfer in a horizontal pipe for different patterns. Flow patterns were observed in a transparent circular pipe (2.54 cm I. D. and L/D=96) using an air/water mixture. Visual identification of the flow patterns was supplemented with photographic data and the results were plotted on the flow regime map proposed by Taitel and Dukler and agreed quite well with each other. A two-phase heat transfer experimental setup was built for this study and a total of 150 two-phase heat transfer data with different flow patterns were obtained under a uniform wall heat flux boundary condition. For these data, the superficial Reynolds number ranged from 640 to 35,500 for the liquid and from 540 to 21,200 for the gas. Our previously developed robust two-phase heat transfer correlation for a vertical pipe with modified constants predicted the horizontal pipe air-water heat transfer experimental data with good accuracy. Overall the proposed correlations predicted the data with a mean deviation of 1.0% and an rms deviation of 12%.

  • PDF