• 제목/요약/키워드: overall heat transfer coefficient

검색결과 224건 처리시간 0.022초

비 등온 유한요소해석을 위한 접면열전달계수의 결정 (Determination of the Overall Heat Transfer Coefficient for Non-isothermal Finite Element Analysis)

  • 강연식;양동열
    • 한국정밀공학회지
    • /
    • 제14권4호
    • /
    • pp.72-77
    • /
    • 1997
  • In the temperature analysis of hot metal forming process, the heat transfer conditions between the work-piece and the tool have improtant influences upon the temperature distribution. The accuracy of thermal analysis depends on the proper description of boundary conditions including heat transfer. At the contact surface of two materials with different temperatures, this requires the knowledge of the overall heat transfer coefficient. In order to determine the overall heat transfer coefficient, a technique is developed. The technique involves temperature measurement by using thermocouples during hot upsetting operations and finite element computation. The overall heat transfer coefficient is determined using a non-linear optimization technique.

  • PDF

연료전지용 딤플형 이중관열교환기의 열전달 성능에 관한 연구 (A Study on the Heat Transfer Perfomance of Dimpled Double Pipe Heat Exchanger on a Fuel Cell)

  • 조동현
    • 수산해양교육연구
    • /
    • 제27권6호
    • /
    • pp.1727-1733
    • /
    • 2015
  • In the present study, the heat transfer performance of dimpled double-pipe heat exchangers for fuel cells that are utilized as cooling systems of fuel cells was studied. In addition, to comparatively analyze the heat transfer performance of dimpled double-pipe heat exchanger for fuel cells, plain double-pipe heat exchangers were also studied. Experimental results were derived on changes in the Reynolds numbers of the cooling water flowing in dimpled and plain double-pipe heat exchangers and changes in the heat flux of the air. Thereafter, to verify the reliability of the experimental results, the theoretical overall heat transfer coefficients and the experimental overall heat transfer coefficients were comparatively analyzed and the following results were derived. The heat transfer rate lost by the hot air and that of the heat transfer rate obtained by the cooling water were well balanced. The experiments of plain double-pipe heat exchangers and dimpled double-pipe heat exchangers were conducted under normal conditions and the theoretical overall heat transfer coefficient and the experimental overall heat transfer coefficient coincided well with each other. In both plain double-pipe heat exchangers and dimpled double-pipe heat exchangers, heat transfer rates increased as the cooling water flow velocity increased. Under the same experimental conditions, the heat transfer performance of dimpled double-pipe heat exchangers was shown to be higher by 1.2 times than that of plain double-pipe heat exchangers.

수평관군 흡수기의 열 및 물질 전달특성에 관한 실험적 연구 (Experimental Study on Heat and Mass Transfer Characteristics in bundles of horizontal absorption tubes)

  • 설원실;정용욱;문춘근;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권3호
    • /
    • pp.113-120
    • /
    • 2000
  • On the absorber of absorption chiller/heater, LiBr solution at high concentration is sprinkled on a bundle of horizontal tube cooled by cooling water. In this case, the conditions of LiBr solution and cooling water have an influence on heat/mass transfer coefficient in this system. Therefor it is important to find optimal operation conditions of absorption chiller/heater to save energy. Heat and mass transfer coefficient increased with the increase of solution flow rate, and also heat and mass transfer rate increased but overall heat and mass transfer coefficient decreased by increasing the solution concentration within the experimental range. The superheating of the solution resulted in superior heat transfer character to a state of equilibrium from the point of heat flux and overall heat transfer coefficient.

  • PDF

엔진 냉각 시스템 개선에 관한 연구 (A Study on Improvement of Engine Cooling System)

  • 김문헌;오병욱
    • 한국자동차공학회논문집
    • /
    • 제2권2호
    • /
    • pp.103-116
    • /
    • 1994
  • In this study the behavior of engine cooling loss and overall heat transfer coefficient were studied experimentally using naturally aspirated engine and turbo charged engine. Using turbo charging, heat dissipation was increased because of the density of the mixture was increased with increment of inlet air flow rate. Therefore, cooling loss of turbo charged engine is larger than naturally aspirated engine. As taking the measurement of surface temperature of combustion chamber, gas heat transfer coefficient was calculated and found that it has greatly affected to overall heat transfer coefficient. The empirical formula of overall heat transfer coefficient established in order to predict of engine cooling loss and express only as a function of mean piston velocity.

  • PDF

입자층(粒子層)을 이용(利用)한 열교환기(熱交換器) 개발(開發)에 관(關)한 연구(硏究)(I) - 유동층형(流動層形) 이중관식(二重管式) 열교환기(熱交換器)의 전열특성(傳熱特性)에 대한 실험적(實驗的) 연구(硏究) (대향류식(對向流式)) (Development of a Particle Bed Heat Exchanger(I) -An Experimental Study on Heat Transfer Characteristics of Fluidized Bed Heat Exchanger with Double Pipe (Counterflow))

  • 임종규;류지오;양한주;서정윤
    • 설비공학논문집
    • /
    • 제2권2호
    • /
    • pp.119-126
    • /
    • 1990
  • In this study, the overall heat transfer coefficients are calculated on fluidized bed double pipe heat exchanger and single phase double pipe heat exchanger at the same condition. The effect of the particle size, its material, fluidizing velocity and static bed height on overall heat transfer coefficient has been investigated. The main conclusions obtained from the experiment are as follows. 1. The overall heat transfer coefficient of the fluidized bed heat exchanger is higher than that of single phase forced convective heat exchanger (maximum 2.3 times) 2. The value of the overall heat transfer coefficient increase with an increase in static bed height and decrease with an increase in particle size. 3. For the same particle size, the particle of low density can obtain higher overall heat transfer coefficient than that of high density.

  • PDF

플라스틱온실 피복재의 관류열전달계수 변화 (Variation of the Overall Heat Transfer Coefficient of Plastic Greenhouse Covering Material)

  • 이현우;소레이멘디옵;김영식
    • 생물환경조절학회지
    • /
    • 제20권2호
    • /
    • pp.72-77
    • /
    • 2011
  • 본 연구는 국내 상업용 온실 피복재의 관류열전달계수를 산정히는데 필요한 기초자료를 제공하기 위하여 최근 국내에 많이 보급되어 사용되고 있는 플라스틱필름으로 피복된 온실에 대해 관류열량을 측정하고 관류열전달계수의 변화를 분석하였으며 그 결과를 요약하면 다음과 같다. 온실 내외부 온도차에 따른 관류열전달계수의 변화를 분석한 결과 피복의 층수에 따라 안정된 관류열전달계수를 나타내게 되는 온실 내외부 온도차의 값이 다르게 나타났기 때문에 온실 피복재에 대한 관류열전달계수를 결정할 때에는 피복층수별로 안정된 값을 나타내는 온실 내외부 온도차 범위에서의 관류열전달계수를 채택하여야할 것이다. 온도차이에 따른 관류열전달계수의 변화 경향은 기존의 연구결과와 잘 일치하였으나 안정된 값을 나타내는 온도차이의 구체적인 값은 다르게 나타났기 때문에 이에 대한 추가적인 연구가 필요할 것으로 판단된다. 풍속에 따른 관류열전달계수의 증가율은 연구자에 따라 많은 차이가 있음을 알 수 있었으며, 이중피복온실이나 커튼을 설치한 온실과 같이 보온성을 높인 온실은 일중피복온실에 비해 풍속에 따른 관류열 손실이 더 작다는 사실을 확인할 수 있었다. 관류열전달계수의 기존 연구결과들을 분석한 결과 연구자에 따라 값이 차이가 있었기 때문에 국내 온실의 정확한 난방부하량을 산정하는데 필요한 적절한 관류열전달계수를 제시하기 위해서는 우선 측정을 위한 표준화된 환경기준이 마련될 필요가 있으며, 또한 국내에서 실제로 사용되고 있는 주요 피복재별로 구체적인 관류열전달계수가 구해져야 할 것이다.

수막하우스의 유량 및 수온에 따른 열전달 특성 분석 (Analysis of Heat Transfer Characteristics in Response to Water Flow Rate and Temperature in Greenhouses with Water Curtain System)

  • 김형권;김승희;권진경
    • 생물환경조절학회지
    • /
    • 제25권4호
    • /
    • pp.270-276
    • /
    • 2016
  • This study analysed overall heat transfer coefficient, heat transmission, and rate of indoor air heating provided by water curtain in order to determine the heat transfer characteristic of double-layered greenhouse equipped with a water curtain system. The air temperatures between the inner and outer layers were determined by the water flow rate and inlet water temperature. Higher water flow rate and inlet water temperature resulted in the increased overall heat transfer coefficient between indoor greenhouse air and water curtain. However, it was found that with higher levels of water flow rate and inlet water temperature, indoor overall heat transfer coefficient was converged about $10W{\cdot}m^{-2}{\cdot}^oC^{-1}$. The low correlation of overall heat transfer coefficient between water curtain and air within double layers was likely because the combination of greenhouse shape, wind speed and outdoor air temperature as well as water curtain affected the heat transfer characteristics. As water flow rate and inlet water temperature increased, the heat transferred into the greenhouse by water curtain also tend to rise. However it was demonstrated that the rate of heat transmission from water curtain into greenhouse with water curtain system using underground water was accounted for 22% to 28% for total heat lost by water curtain. The results of this study which quantify heat transfer coefficient and net heat transfer from water curtain may be a good reference for economical design of water curtain system.

FAPO 제올라이트 흡착제 코팅을 통한 핀-관 열교환기 운전조건별 열전달 성능특성 (Heat Transfer Characteristics of Fin-Tube Heat Exchanger Coated with FAPO Zeolite Adsorbent at Different Operating Conditions)

  • 정철기;김용찬;배경진;차동안;권오경
    • 동력기계공학회지
    • /
    • 제21권3호
    • /
    • pp.93-101
    • /
    • 2017
  • In conventional adsorption chamber, adsorbent is embedded in between heat exchanger fins by wire mesh. This method impedes heat and mass transfer efficiency. So in this study, to improve the heat transfer performance of heat exchanger, a fin-tube exchanger was coated with FAPO (Ferroaluminophosphate) zeolite adsorbent. The fin-tube heat exchanger has a fin pitch of 1.8 mm with a variation of adsorbent coating thickness of about 0.1 mm, 0.15 mm and 0.2 mm. By varying cooling water temperature and chilled water temperature respecively, heat transfer rate and overall heat transfer coefficient were investigated. As a result, the heat transfer rate and overall heat transfer coefficient increase with decreasing cooling water temperature and increasing chilled water temperature. Under the basic conditions, the heat transfer rate of heat exchanger with 0.2 mm coating thickness is 11% and 43% higher than that of 0.1 mm and 0.15 mm, respectively. The overall heat transfer coefficient is $189.1W/m^2{\cdot}^{\circ}C$, it is two times lager than that of 0.1 mm.

혼합냉매를 사용한 열펌프 시스템의 성능과 열전달 특성 (Performance and Heat Transfer Characteristics of Heat Pump System Using Refrigerant Mixtures)

  • 김동섭;신지영;노승탁
    • 설비공학논문집
    • /
    • 제4권4호
    • /
    • pp.360-369
    • /
    • 1992
  • A heat pump system is constructed to evaluate its performance and heat transfer characteristics with mixtures of R22/R142b as working fluids. The heat transfer in the evaporator and the overall performance are measured and analyzed in terms of the compositions and relevant variables. Possibility of capacity modulation by changing composition is observed without degradation of heat transfer coefficients and coefficient of performance. The cooling capacity is varied continuously within 200 percent based on minimum capacity at constant compressor speed. For similar cooling capacity, COP is improved by mixing two refrigerants and shows maximum value at 60% mass fraction of R22. Average heat transfer coefficients of mixtures decrease in comparison with pure refrigerants at similar cooling capacity and mass flow rate. However, the overall heat transfer coefficients decrease moderately. A cycle simulation is performed in order to manifest the advantages of using refrigerant mixtures, considering experimentally observed heat transfer characteristics.

  • PDF

일중 피복온실의 관류열전달계수 산정 (Estimation of Overall Heat Transfer Coefficient for Single Layer Covering in Greenhouse)

  • 황영윤;이종원;이현우
    • 생물환경조절학회지
    • /
    • 제22권2호
    • /
    • pp.108-115
    • /
    • 2013
  • 본 연구의 목적은 일중피복온실의 피복재에 대하여 우리나라 환경에 적합한 관류열전달계수를 산정하는 방법을 찾아내고 검증하여 다양한 온실조건 및 환경조건에서 관류열전달계수를 산정할 수 있는 모델을 제시하는 것이다. 온실내부 및 외부온도와 피복재 표면온도와의 상관관계를 분석한 결과 주간 및 야간 온도를 모두 고려하였을 때보다 야간온도만을 고려하였을 경우가 상관성이 훨씬 더 높은 것으로 나타났다. 피복재의 표면온도가 온실의 외부온도보다는 내부온도와 상관성이 더 높은 것으로 나타났다. 관류열전달계수를 산정하는데 사용된 5가지 종류의 대류 및 복사열전달계수 산정식을 비교한 결과 Kittas가 제안한 대류 및 복사열전달계수 산정식이 가장 적합한 것으로 나타났다. 피복재 표면온도의 측정값과 계산 값의 상관성을 분석한 결과 직선의 기울기는 1.009이고 절편은 0.001이며 결정계수가 0.98로 나타나 본 연구에서 제시된 관류열전달계수 산정모델이 신뢰성이 있음을 확인할 수 있었다. 온실내부로부터 피복재 내부표면으로 전달되는 열흐름량의 경우 모든 풍속구간에 대해 대류열전달량이 복사열전달량보다 더 컸으며 풍속이 증가할수록 그 차이가 증가하였다. 외부표면에서 손실되는 열흐름량의 경우 풍속이 낮을 때에는 대류열전달량에 비해 복사열전달량이 더 컸으나 풍속이 증가함에 따라 그 차이는 점점 줄어들어 풍속이 높을 때에는 대류열전달량이 더 커지는 것으로 나타났다. 피복재 외부 표면의 대류열전달량은 내부표면의 대류열전달량에 직선적으로 비례하여 증가하는 것으로 나타났다. 풍속이 증가함에 따라 관류열전달계수는 증가하고 피복재의 표면 온도는 감소하는 것을 확인할 수 있었고, 변화추세를 보면 관류열전달계수는 거듭제곱함수와 그리고 표면온도는 로그함수와 잘 일치하였다.