• Title/Summary/Keyword: overall SPL (Sound Pressure Level)

Search Result 15, Processing Time 0.031 seconds

A Study on Development of a Prediction Model for the Sound Pressure Level Related to Vehicle Velocity by Measuring NCPX Measurement (NCPX 계측 방법에 따른 속도별 소음 데시벨 예측 모델 개발에 대한 연구)

  • Kim, Do Wan;An, Deok Soon;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.21-29
    • /
    • 2013
  • PURPOSES : The objective of this study is to provide for the overall SPL (Sound Pressure Level) prediction model by using the NCPX (Noble Close Proximity) measurement method in terms of regression equations. METHODS: Many methods can be used to measure the traffic noise. However, NCPX measurement can powerfully measure the friction noise originated somewhere between tire and pavement by attaching the microphone at the proximity location of tire. The overall SPL(Sound Pressure Level) calculated by NCPX method depends on the vehicle speed, and the basic equation form of the prediction model for overall SPL was used, according to the previous studies (Bloemhof, 1986; Cho and Mun, 2008a; Cho and Mun, 2008b; Cho and Mun, 2008c). RESULTS : After developing the prediction model, the prediction model was verified by the correlation analysis and RMSE (Root Mean Squared Error). Furthermore, the correlation was resulted in good agreement. CONCLUSIONS: If the polynomial overall SPL prediction model can be used, the special cautions are required in terms of considering the interpolation points between vehicle speeds as well as overall SPLs.

Effects of macroporosity and double porosity on noise control of acoustic cavity

  • Sujatha, C.;Kore, Shantanu S.
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.351-366
    • /
    • 2016
  • Macroperforations improve the sound absorption performance of porous materials in acoustic cavities and in waveguides. In an acoustic cavity, enhanced noise reduction is achieved using porous materials having macroperforations. Double porosity materials are obtained by filling these macroperforations with different poroelastic materials having distinct physical properties. The locations of macroperforations in porous layers can be chosen based on cavity mode shapes. In this paper, the effect of variation of macroporosity and double porosity in porous materials on noise reduction in an acoustic cavity is presented. This analysis is done keeping each perforation size constant. Macroporosity of a porous material is the fraction of area covered by macro holes over the entire porous layer. The number of macroperforations decides macroporosity value. The system under investigation is an acoustic cavity having a layer of poroelastic material rigidly attached on one side and excited by an internal point source. The overall sound pressure level (SPL) inside the cavity coupled with porous layer is calculated using mixed displacement-pressure finite element formulation based on Biot-Allard theory. A 32 node, cubic polynomial brick element is used for discretization of both the cavity and the porous layer. The overall SPL in the cavity lined with porous layer is calculated for various macroporosities ranging from 0.05 to 0.4. The results show that variation in macroporosity of the porous layer affects the overall SPL inside the cavity. This variation in macroporosity is based on the cavity mode shapes. The optimum range of macroporosities in poroelastic layer is determined from this analysis. Next, SPL is calculated considering periodic and nodal line based optimum macroporosity. The corresponding results show that locations of macroperforations based on mode shapes of the acoustic cavity yield better noise reduction compared to those based on nodal lines or periodic macroperforations in poroelastic material layer. Finally, the effectiveness of double porosity materials in terms of overall sound pressure level, compared to equivolume double layer poroelastic materials is investigated; for this the double porosity material is obtained by filling the macroperforations based on mode shapes of the acoustic cavity.

Aeroacoustic Characteristics and Noise Reduction of a Centrifugal Fan for a Vacuum Cleaner

  • Jeon, Wan-Ho;Rew, Ho-Seon;Kim, Chang-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.185-192
    • /
    • 2004
  • The aeroacoustic characteristics of a centrifugal fan for a vacuum cleaner and its noise reduction method are studied in this paper. The major noise source of a vacuum cleaner is the centrifugal fan. The impeller of the fan rotates at over 30000 rpm, and generates very high-level noise. It was revealed that the dominant noise source is the aerodynamic interaction between the rotating impeller and stationary diffuser. The directivity of acoustic pressure showed that most of the noise propagates backward direction of the fan-motor assembly. In order to reduce the high tonal sound generated from the aerodynamic interaction, unevenly pitched impeller and diffuser, and tapered impeller designs were proposed and experiments were performed. Uneven pitch design of the impeller changes the sound quality while the overall sound power level (SPL) and the performance remains similar. The effect of the tapered design of impeller was evaluated. The trailing edge of the tapered fan is inclined. This reduces the flow interaction between the rotating impeller and the stationary diffuser because of some phase shifts. The static efficiency of the new impeller design is slightly lower than the previous design. However, the overall SPL is reduced by about 4 dB(A). The SPL of the fundamental blade passing frequency (BPF) is reduced by about 6 dB (A) and the 2$\^$nd/ BPF is reduced about 20 dB (A). The vacuum cleaner with the tapered impeller design produces lower noise level than the previous one, and the strong tonal sound was dramatically reduced.

Numerical Investigation on the Characteristics of Flow-Induced Noise in a Centrifugal Blower

  • Lee, Chanyoung;Jeong, Taebin;Ha, Kyoung-Ku;Kang, Shin-Hyoung
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.1
    • /
    • pp.7-15
    • /
    • 2014
  • In the present study, a computational analysis of the flow in a centrifugal blower is carried out to predict a performance and to explain noise characteristics of the blower. Unsteady, 3D Navier-Stokes equations were solved with k-${\varepsilon}$ turbulence model using CFX software. CFD results were compared with the experimental data that is acquired from an experiment conducted with the same blower. The pressure fluctuation in the blower was transformed into the frequency domain by Fourier decomposition to find the relationship between flow behaviors and noise characteristics. Sound pressure level (SPL) which is obtained from wall pressure fluctuation at impeller outlet represents relative overall sound level of the blower well. Sound spectra show that there are some specific peak frequencies at each mass flow rate and it can be explained by flow pattern.

A Study on the Evaluation Method of Sound Power for a Travelling Vehicle Using CPX and Pass-by Measurements (CPX 및 Pass-by 계측을 이용한 단독 주행 차량의 음향파워 평가 방법에 관한 연구)

  • Choi, T.M.;Moon, S.H.;Seo, Y.G.;Kim, J.H.;Kim, B.H.;Bae, H.J.;Ji, W.J.;Cho, D.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.11 s.116
    • /
    • pp.1124-1131
    • /
    • 2006
  • This paper presents a novel method to determine sound power level(PWL) emitted by a travelling vehicle for road traffic noise simulation. The PWL is evaluated by the equivalent sound pressure level (SPL) measured by close proximity method and the sound power correction factor derived from the maximum SPL measured by pass-by method and the propagation attenuation of vehicle noise during the pass-by measurement. Using the method, we derive the empirical formula for PWL estimation in 1/1-octave and overall frequency bands for 8 vehicles (automobile, SUV, small truck, large bus, trailer, 3 dump trucks) tested at two road surfaces (dense graded asphalt, 30mm transverse tinning concrete) of Korean highway test road. The suggested approach, if securing sufficient data to represent the acoustic characteristics of all vehicle types, has il strong merit to be able to evaluate sound power levels for any combination of vehicle categories and traffic volumes.

A Study on the Evaluation Method of Sound Power for a Travelling Vehicle Using CPX and Pass-by Measurements (CPX 및 Pass-by 계측을 이용한 단독 주행 차량의 음향파워 평가 방법에 관한 연구)

  • Choi, Tae-M.;Mun, Sung-H.;Seo, Young-G.;Kim, Jin-H.;Kim, Byung-H.;Bae, Hyo-J.;Cho, Dae-S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.421-427
    • /
    • 2006
  • This paper presents a novel method to determine sound power level(PWL) emitted by a travelling vehicle for road traffic noise simulation. The PWL is evaluated by the equivalent sound pressure level(SPL) measured by close proximity method and the sound power correction factor derived from the maximum SPL measured by pass-by method and the propagation attenuation of vehicle noise during the pass-by measurement. Using the method, we derive the empirical formula for PWL estimation in 1/1-octave and overall frequency bands for 8 vehicles(automobile, SUV, small truck, large bus, trailer, 3 dump trucks) tested at two road surfaces(dense graded asphalt, 30mm transverse tinning concrete) of Korean highway test road. The suggested approach, if securing sufficient data to represent the acoustic characteristics of au vehicle types, has a strong merit to be able to evaluate sound power levels for any combination of vehicle categories and traffic volumes.

  • PDF

Sound Design to Improve the Quality of Noise from Home Appliances (가전 제품의 음질 향상을 위한 음설계 연구)

  • 주재만;이제원;오상경;이나경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1122-1127
    • /
    • 2003
  • For many years, engineers in the field of acoustics have used the A-weighted sound pressure level (SPL). Since they were interested just in a reduction of noise, the A-weighted SPL was considered good enough to quantify noise problems. This is reasonable because loudness is usually the most important parameter for most noise problems and A-weighted SPL is often reasonably well correlated with loudness. As the overall noise levels drop, however, other parameters become more important and must be considered, Advent of sound quality came from an understanding that A-weighted SPL only reflects the loudness of a sound. It is obviously impossible to characterize a complex sound with a single number. Although product mostly has revealed physical quantities created by the standpoint of engineers, consumers perceive and evaluate products on the non-physical characteristics, such as feelings, emotions, and experiences in different social and cultural situations. Especially, for the household appliances for instance air-conditioner or refrigerator, the sound is heavily related to the satisfaction of a customer who is a real user of the product and is very important factor to decide purchasing as well as visual design. Therefore, in this research, the general tendency of consumer's psychology was investigated for the appliances. And also, in order to obtain clear guidelines fur sound manipulation, the characteristics of the sound of air-conditioning systems and refrigerators were compared with competitors'. since it is important to overcome the discrepancy between engineering and marketing, the relevance of sound manipulation must be documented from the consumer's perspective. That is the reason why we conducted a consumer and marketing oriented study.

  • PDF

Highspeed Train : Sound Power and Noise Propagation Characteristics (고속철도의 소음 특성과 전파현상)

  • 김정태;은희준
    • Journal of KSNVE
    • /
    • v.6 no.3
    • /
    • pp.349-355
    • /
    • 1996
  • For a rail traffic noise, a typical source has a length of 200m - 400m so that the noise pollution areas have been located in the transition regions where the sound level drops between 3dB/dd and 6dB/dd. Therefore, in this region, parameters such as a horizontal distance from the track, the geometry of the ground surface, the environmental effect, and the boundary impedance condition play import roles, especially in our nation's situation. In this study, modelling techniques for the finite length of noise source have been investigated in order to evaluate the rail traffic noise level. Then. noise correction value .${\Delta}$SPL for various location in the track region is represented by the non-dimensionalized horizontal and parallel distance from the track. As an application, a high speed train is examined. Beas on the noise data measured for a Eurostar in France, the sound power value per unit length $H_1$is calcuated. It turns out that$H_1$is 109 dB. Overall sound power from the highspeed train to be serviced in our country is expected to 135 dBA.

  • PDF

A Study on Prediction of Rolling Noise for Railway;- Calculation of Ground Effect and Noise Radiated by Sleeper- (철도차량의 전동음 예측에 관한 연구;- 지표면 효과 및 침목에서 방사되는 소음 계산 -)

  • 김재철;정현범;이재응
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.1
    • /
    • pp.56-62
    • /
    • 2003
  • The major noise source for the conventional train is the rolling noise caused by the interaction of the wheels and rails during the train passage on the tangent track. In order to control the rolling noise, the noise radiated from wheels, rails and sleepers should be analyzed and predicted. In this paper, a prediction method of wheel/rail rolling noise generated by the roughness of the wheel/rail surface is described, where the method is considering the effect of noise radiated by sleepers and the effect of ground. The method is applied to the Korean railway system, and the sound pressure level (SPL) predicted by the proposed method is compared with the measured SPL. Overall. the result shows good agreement between the predicted and measured values.

The measurement and analysis of Regenerative Pump Noise (재생펌프 소음특성의 측정 및 해석에 관한 연구)

  • Kim, Tae-Hoon;Seo, Young-Soo;Jeong, Weui-Bong;Jeong, Ho-Kyeong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1067-1071
    • /
    • 2004
  • In this paper, the characteristic of the regenerative pump is reviewed by the measurement and the analysis. The dominant noise sources are harmonic components of the rotating impeller frequency. The acoustic characteristics and the noise source position at the dump are identified. In order to reduce the high-level peak noise, the interior flow of the pump chamber is analyzed by CFD (Computational Fluid Dynamics). Acoustic pressure is calculated with Ffowscs Williams and Hawkings equation. As the result of the analysis new design of the pump chamber is recommended. The recommended pump is compared with original pump by evaluating the RMS value of a interior static pressure and the sound pressure level. The new pump chamber recommended by analysis results is proved by a process of the measurement. The overall SPL of a recommended pump is reduced about 3 dBA.

  • PDF