• Title/Summary/Keyword: over-pressure

Search Result 3,642, Processing Time 0.028 seconds

The Lubrication Characteristics of the Vane Tip Under Inlet Pressure Boundary Conditions for an Oil Hydraulic Vane Pump

  • Cho Ihn-Sung;Oh Seok-Hyung;Jung Jae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2179-2186
    • /
    • 2005
  • The lubrication modes of line contact between the vane and the camring in an oil hydraulic vane pump have been investigated. First, variations of the radial acting force of a vane were calculated from previously measured results of the dynamic internal pressure in four chambers surrounding a vane. Next, distinctions of the lubrication modes were made using Hooke's chart, which represents an improvement over Johnson's chart. Finally, the influence of boundary conditions in the lubrication region on fluid film lubrication was examined by calculating film pressure distributions. The results show that the lubrication modes of the vane tip are a rigid-variable viscosity region. This region discharges pressure higher than 7 MPa, and exerts a great influence on oil film pressure in the large arc section due to the Piezo-viscous effect.

Analysis of the February 2014 East Coast Heavy SnowFall Case Due to Blocking (블로킹에 의한 2014년 2월 동해안 지방 폭설 분석)

  • Bae, Jeong-Ho;Min, Ki-Hong
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.227-241
    • /
    • 2016
  • This study investigated the cause of the heavy snowfall that occurred in the East Coast of Korea from 6 February to 14 February 2014. The synoptic conditions were analyzed using blocking index, equivalent potential temperature, potential vorticity, maritime temperature difference, temperature advection, and ground convergence. During the case period, a large blocking pattern developed over the Western Pacific causing the flow to be stagnant, and there was a North-South oriented High-to-Low pressure system over the Korean Peninsula because of this arrangement. The case period was divided into three parts based on the synoptic forcing that was responsible for the heavy snowfall; detailed analyses were conducted for the first and last period. In the first period, a heavy snowfall occurred over the entire Korean Peninsula due to strong updrafts from baroclinic instability and a low pressure caused by potential vorticity located at the mid-troposphere. In the lower atmosphere, a North-South oriented High-to-Low pressure system over the Eastern Korea intensified the easterly airflow and created a convergence zone near the ground which strengthened the upslope effect of the Taebaek Mountain range with a cumulative fresh snowfall amount of 41 cm in the East Coast region. In the last period, the cold air nestled in the Maritime Province of Siberia and Manchuria strengthened much more than that in the first half and extended to the East Sea. The temperature difference between the 850 hPa air and the SST was large and convective clouds developed over the sea. The highest cumulative fresh snow amount of 39.7 cm was recorded in the coastal area during this period. During the entire period, vertically oriented equivalent potential temperature showed neutral stability layer that helped the cloud formation and development in the East Coast. The 2014 heavy snowfall case over the East Coast provinces of Korea were due to: 1) stagnation of the system by blocking pattern, 2) the dynamic effect of mid-level potential vorticity of 1.6 PVU, 3) the easterly air flow from North-South oriented High-to-Low pressure system, 4) the existence of vertically oriented neutral stable layer, and 5) the expansion of strong cold air into the East Sea which created a large temperature difference between the air and the ocean.

Thrust modulation performance analysis of pintle-nozzle motor (핀틀 노즐형 로켓 모타의 추력 조절 성능에 관한 연구)

  • Kim, Joung-Keun;Park, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.392-398
    • /
    • 2009
  • Theoretical thrust equations for the diverse nozzle expansion condition were derived. By using the obtained thrust equations, parametric studies were carried out to estimate the effect of pressure exponent, minimum operation pressure, ambient pressure and extinguishment pressure on thrust modulation performance in pintle-nozzle solid rocket motors. Analysis results showed that thrust turndown ratio can be easily attained by small nozzle-throat area variation at high pressure exponent, low minimum operation pressure, high ambient pressure and high extinguishment pressure condition. At those conditions, the highest chamber pressure to obtain the intended thrust turndown ratio can be minimized.

Splitting method for the combined formulation of fluid-particle problem

  • Choi, Hyung-Gwon;Yoo, Jung-Yul;Jeoseph, D.D.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.709-714
    • /
    • 2000
  • A splitting method for the direct numerical simulation of solid-liquid mixtures is presented, where a symmetric pressure equation is newly proposed. Through numerical experiment, it is found that the newly proposed splitting method works well with a matrix-free formulation fer some bench mark problems avoiding an erroneous pressure field which appears when using the conventional pressure equation of a splitting method. When deriving a typical pressure equation of a splitting method, the motion of a solid particle has to be approximated by the 'intermediate velocity' instead of treating it as unknowns since it is necessary as a boundary condition. Therefore, the motion of a solid particle is treated in such an explicit way that a particle moves by the known form drag (pressure drag) that is calculated from the pressure equation in the previous step. From the numerical experiment, it was shown that this method gives an erroneous pressure field even for the very small time step size as a particle velocity increases. In this paper, coupling the unknowns of particle velocities in the pressure equation is proposed, where the resulting matrix is reduced to the symmetric one by applying the projector of the combined formulation. It has been tested over some bench mark problems and gives reasonable pressure fields.

  • PDF

Multiple Orifice Technique for Pressure Drop in Compressible Pipe Flows

  • Kim, Heuy-Dong;Koo, Byoung-Soo;Woo, Sun-Hoon;Setoguchi, Toshiaki
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.459-464
    • /
    • 2000
  • In order to investigate the effectiveness of an orifice system in producing pressure drops and the effect of compressibility on the Pressure drop, computations using the mass-averaged implicit Wavier-Stokes equations were applied to the axisymmetric pipe flows with the operating pressure ratio from 1.5 to 20.0. The standard k-e turbulence model was employed to close the governing equations. Numerical calculations were carried out for some combinations of the multiple orifice configurations. The present CFD data showed that the orifice systems, which have been applied to incompressible flow regime to date, can not be used for the hint operating Pressure ratio flows. The orifice interval did not strongly affect the total pressure drop but the orifice area ratio more than 2.5 led to high pressure drops. The total pressure drop rapidly increased in the range of the operating pressure ratio from 1.5 to 4.0, but it did not depend on the operating pressure ratio over 4.0.

  • PDF

A low-cost expandable multi-channel pressure system for wind tunnels

  • Moustafa, Aboutabikh;Ahmed, Elshaer;Haitham, Aboshosha
    • Wind and Structures
    • /
    • v.35 no.5
    • /
    • pp.297-307
    • /
    • 2022
  • Over the past few decades, the use of wind tunnels has been increasing as a result of the rapid growth of cities and the urge to build taller and non-typical structures. While the accuracy of a wind tunnel study on a tall building requires several aspects, the precise extraction of wind pressure plays a significant role in a successful pressure test. In this research study, a low-cost expandable synchronous multi-pressure sensing system (SMPSS) was developed and validated at Ryerson University's wind tunnel (RU-WT) using electronically scanning pressure sensors for wind tunnel tests. The pressure system consists of an expandable 128 pressure sensors connected to a compact data acquisition and a host workstation. The developed system was examined and validated to be used for tall buildings by comparing mean, root mean square (RMS), and power spectral density (PSD) for the base moments coefficients with the available data from the literature. In addition, the system was examined for evaluating the mean and RMS pressure distribution on a standard low-rise building and were found to be in good agreement with the validation data.

Influence of D.I. Water Pressure and Purified $N_2$ Gas on the Inter Level Dielectric-Chemical Mechanical Polishing Process (탈이온수의 압력과 정제된 $N_2$ 가스가 ILD-CMP 공정에 미치는 영향)

  • Kim, Sang-Yong;Seo, Yong-Jin;Kim, Chang-Il;Chung, Hun-Sang;Lee, Woo-Sun;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.31-34
    • /
    • 2000
  • It is very important to understand the correlation of between inter layer dielectric(ILD) CMP process and various facility factors supplied to equipment system. In this paper, the correlation between the various facility factors supplied to CMP equipment system and ILD CMP process were studied. To prevent the partial over-polishing(edge hot-spot) generated in the wafer edge area during polishing, we analyzed various facilities supplied at supply system. With facility shortage of D.I. water(DIW) pressure, we introduced an adding purified $N_2(PN_2)$ gas in polishing head cleaning station for increasing a cleaning effect. DIW pressure and PN2 gas factors were not related with removal rate, but edge hot-spot of patterned wafer had a serious relation. We estimated two factors (DIW pressure and PN2 gas) for the improvement of CMP process. Especially, we obtained a uniform planarity in patterned wafer and prohibited more than 90% wafer edge over-polishing. In this study, we acknowledged that facility factors supplied to equipment system played an important role in ILD-CMP process.

  • PDF

High-pressure Compaction of Sawdust of Hyunsasi-poplar (Populus alba ${\times}$ P. glandulosa) for Densified Fuel (고밀화에 의한 현사시 톱밥의 고형연료화)

  • 한규성;여진기
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.2
    • /
    • pp.54-59
    • /
    • 2003
  • Recently, densified pellet fuel from wood biomass is widely used at North America and Europe as a regenerable and clean carbon neutral bioenergy. High-pressure compaction of sawdust of Hyunsasi-poplar (Populus alba ${\times}$ P. glandulosa) to form a densified fuel was studied. Calorific and elemental analysis were carried out to assess Hyunsasi-poplar clones as fuels. Hot-press process was adopted for compaction of sawdust and compaction was performed under temperature from 100 to 180$^{\circ}C$, at pressure of 250 to 1000 kgf/$\textrm{cm}^2$, and for 2.5 to 10 minutes. Densified fuels were evaluated by its oven-dry density and fines after 5-minute shaking test. The target density and fines of densified fuels were over 1.2 g/$\textrm{cm}^2$ and below 0.5%, respectively. When the press-temperature is over 160$^{\circ}C$, densified fuels with density eve. 1.2 g/$\textrm{cm}^2$ and with fines below 0.5% can be produced. And the pressure over 750 kgf/$\textrm{cm}^2$ was effective for this production. It was found that the optimum press condition for preparation of densified fuel was 180$^{\circ}C$ -1000 kgf/$\textrm{cm}^2$ minutes.

  • PDF

A Study on the Correlation of Oil Drain and Engine Tilting Angle (오일 드레인과 엔진경사각도간의 상관관계)

  • Kim, Dae-Yeol;Park, Pyong-Wan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.51-57
    • /
    • 2011
  • Parametric studies based on analysis of lubrication system of a four cylinder gasoline engine are illustrated system in this paper. In development process of engine lubrication system, parts of failure cases are related with oil pull over and oil churning phenomenon. The crankcase & head system pressure by oil churning phenomenon are gradual increased. It cause oil pull over phenomenon at engine breather line and oil over-consumption. In order to improve oil reduction and oil pull over phenomenon are also considered in the developing state. For this study, the characteristics of engine lubrication system are measured at various tilting angle and drain hole sizes. In addition, the oil flow & oil quantity are tested by blow by meter and catch jar. Results are presented to stabilize the oil supply system at sever driving condition. The data from present study are available for the engine lubrication system.

Interdecadal Variability and Future Change in Spring Precipitation over South Korea (한반도 봄철 강수량의 장기변동과 미래변화)

  • Kim, Go-Un;Ok, Jung;Seo, Kyong-Hwan;Han, Sang-Dae
    • Atmosphere
    • /
    • v.22 no.4
    • /
    • pp.449-454
    • /
    • 2012
  • This study presents the long-term variability of spring precipitation over the Korean peninsula. It is found that the significant interdecadal change in the spring precipitation has occurred around year 1991. Over the Korean peninsula the precipitation for the post-1991 period increased by about 30 mm per year in CMAP and station-measured data compared to the precipitation prior to year 1991. Due to an increased baroclinicity during the later period, the low-level negative pressure anomaly has developed with its center over northern Japan. Korea is situated at the western end of the negative pressure anomaly, receiving moisture from westerly winds and producing more precipitation. Also, we estimate the change in the near future (years 2020~2040) spring precipitation using six best performing Coupled Model Intercomparison Project 3 (CMIP3) models. These best model ensemble mean shows that spring precipitation is anticipated to increase by about 4% due to the strengthened westerlies accompanied by the northwestern enhancement of the North Pacific subtropical high.