• Title/Summary/Keyword: ovary

Search Result 1,542, Processing Time 0.02 seconds

STUDIES ON AVIAN VISCERAL LYMPHOMATOSIS I. THE INCREASED INCIDENSE AMONG CHICKEN FLOCKS AND PATHOLOGIC PICTURES (장기형임파종증(臟器型淋巴腫症)에 관(關)한 연구(硏究) 1. 계군(鷄群)에서의 임파종증(淋巴腫症)의 발생(發生) 및 병리학적소견(病理學的所見))

  • Kim, Uh Ho;Lim, Chang Hyeong
    • Korean Journal of Veterinary Research
    • /
    • v.4 no.1
    • /
    • pp.35-42
    • /
    • 1964
  • 1). An nanlysis was made of 3,500 postmortem diagnoses for the three years 1961 through 1963 to determine whether there was any actual incidence of avian visceral lymphomntosis in the field. Chickens autopsied, which showed gross alterations were 7.6 percent or 266 cases. The diminished incidence of the disease in second and third years seemed due to decreased total numbers of chicken flocks year by year for the reason of difficult feed supply. 2). Because chickens autopsied in this study were not clearly known of their breeds and lines, no distinct data on the incidence in various breeds were made. Some exact breeds were in too small numbers to have any statistical significance. Inconceivably, no other types of avian leukosis than visceral lymphomatosis had been observed in any appreciable number in this analysis. 3). Pathologic analysis for affected organs was made grossly and microscopically. In the gross pictures, liver, spleen, kidney, ovary, and in some case, intestine principally showed lesions, but its manifestation was variable in different organs. In such organs, livers were affected more frequently, and spleens followed next. The organs were classified and arranged according to the gross alterations, and among their distribution one-half of livers were in diffuse variety; one-fourths in nodular; about one-sevenths in mixed; and granular variety followed next. In the spleen samples, two-thirds were in diffuse variety; one-fourths in nodular; and follicular only in three cases. Ovaries almost showed follicular lesions, the diffused were less than one-fifths of total specimens. Kidneys were occurred almost in diffuse variety. And intestine showed only nodular tomors. Microscopically, 42 cases of visceral lymphomatosis composed of 24 livers, 10 spleens, 3 kidneys, 3 intestines and 2 ovaries were examined. The tumor cells were lymphoid cells showing various component in size, shape and stainability. Mitotic figures were usually present. The proportion of the component cells were various in all cases and there were variations in the distribution of the tumor cells. The types of distribution were classified according to the standard proposed by Horiuchi as nodular, infiltrative and diffuse proliferation. In cases of visceral lymphomatosis of the livers and the spleens the types of infiltrative, nodular and diffuse proliferation could be classified. In the cases of the kidneys the types of diffuse and nodular proliferation were observed. In the cases of the intestines and the ovaries the types of infiltrative and diffuse proliferation were observed respectively.

  • PDF

A Morphological Study of Bamboos by Vascular Bundle Sheath (대나무류(類)의 유관속초(維管束鞘)에 의(依)한 형태학적(形態學的) 연구(硏究))

  • Kim, Jai Saing
    • Journal of Korean Society of Forest Science
    • /
    • v.25 no.1
    • /
    • pp.13-47
    • /
    • 1975
  • Among the many species of bamboo, it is well known that the dwarf-type is widely distributed in the tropical regions, and the slender type in temperated zone. In the temperated zone the trees have extensively differentiated into one hundred species in 50 genera. In many oriental countries, the bamboo wood is being used as a material for construction and for the manufacture of technical instruments. The bamboo shoot is also regarded as a good and delicious edible resource. Moreover, recent medical investigation verifies that the sap of certain species of the bamboo is an antibiotic effect against cancer. Fortunately, it is very easy to propagate the bamboo trees by using cutting from southeastern Asian countries. This important resource can further be used as a significant source of pulp, which is becoming increasingly important. The classification system of this significant resource has not been completely established to date, even though its importance has been emphasized. Initiated by Canlevon Linne in the 18th century, a classification method concerning the morphological characteristics of flowers was the first step in developing a classification. But it was not an easy task to accomplish, because this type of classification system is based on the sexual organs in bamboo trees. Because the bamboo has a long life cycle of 60-120 years and classification according to this method was very difficult as the materials for the classification are not abundant and some species have changed, even though many references related to the morphological classification of bamboo trees are available nowadays. So, the certification of bamboo trees according to the morphological classification system is not reasonable for us. Consequently, the classification system of bamboo trees on the basis of endomorphological characteristics was initiated by Chinese-born Liese. And classification method based on the morphological characteristics of the vascular bundle was developed by Grosser. These classification methods are fundamentally related to Holltum's classification method, which stressed the morphology of the ovary. The author investigated to re-establish a new classification method based on the vascular sheath. Twenty-six species in 11 genera which originated from Formosa where used in the study. The results obtained from the investigation were somewhat coordinated with those of Crosser. Many difficulties were found in distinguishing the species of Bambusa and Dendrocalamus. These two species were critically differentiated under the new classification system, which is based on the existence of a separated vascular bundle sheath in the bamboo. According to these results, it is recommended that Babusa divided into two groups by placing it into either subspecies or the lower categories. This recommendation is supported by the observation that the evolutional pattern of the bamboo thunk which is from outward to inward. It is also supported by the viewpoint that the fundamental hypothesis in evolution is from simple to complex. There remained many problems to be solved through more critical examination by comparing the results to those of the classification based on the sexual organs method. The author observed the figure of the cross-sectional area of vascular trunk of bamboo tree and compared the results with those of Grosser and Liese, i.e. A, $B_1$, $B_2$, C, and D groups in classification. Group A and $B_2$ were in accordance with the results of those scholars, while group D showed many differences, Grosser and Liese divided bamboo into "g" type and "h" type according to the vascular bundle type; and they included Dendrocalamus and Bambusa in Group D without considering the type of vascular bundle sheath. However, the results obtained by the author showed that Dendrocalamus and Bambusa are differentiated from each other. By considering another group, "i" identified according to the existence of separated vascular bundle sheath. Bambusa showed to have a separated vascular bundle sheath while Dendrocalamus does not have a separated vascular bundle sheath. Moreover, Bambusa showed peculiar characteristics in the figure of vascular development, i.e., one with an inward vascular bundle sheath and the other with a bivascular bundle sheath (inward and outward). In conclusion, the bamboo species used in this experiment were classified in group D, without any separated vascular bundle sheath, and in group E, with a vascular bundle sheath. Group E was divided into two groups, i.e., and group $E_1$, with bivascular sheath, and group $E_2$, with only an inward vascular sheath. Therefore, the Bambusa in group D as described by Grosser and Liese was included in group E. Dendrocalamus seemed to be the middle group between group $E_l$ and group $E_2$ under this classification system which is summarized as follows: Phyllostachys-type: Group A - Phyllostachys, Chymonobambus, Arundinaria, Pseudosasa, Pleioblastus, Yashania Pome-type: Group $B_2$ - Schizostachyum, Melocanna Hemp-type: Group D - Dendrocalamu Bambu-type: Group $E_1$ - Bambusa ghi.

  • PDF