• Title/Summary/Keyword: ovarian function

Search Result 172, Processing Time 0.021 seconds

Effects of Sagunjatang-Gami on Uterine and Ovarian Function in the Ovariectomized Rat Postmenopause Model (사군자탕가미방(四君子湯加味方)이 난소적출 폐경 병태 모델의 자궁 및 난소 기능에 미치는 영향)

  • Maeng, Yu-Sook;Choi, Min-Sun;Ahn, In-Suk;Kim, Dong-Il
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.25 no.4
    • /
    • pp.12-26
    • /
    • 2012
  • Objectives: The purpose of this study is to examine the effects of Sagunjatang-Gami(SGJT) on uterine and ovarian function in the ovariectomized rat postmenopause model. Methods: SGJT was administered in ovariectomized Wister albino female rats for three month. After that, uterine weight, uterine index, serum estradiol-$17{\beta}$ levels and phosphorylation of ERK or AKT, and histological analysis of uterus were measured to assess the impact on uterine and ovarian function in ovariectomized rats. In addition, phosphorylation of $ER{\alpha}$, ERK, AKT by SGJT in MDA-MB-231 cells were measured. To identify safety of SGJT, the cell cytoxicity in MDA-MB-231 cells and serum GOT, GPT levels were measured in ovariectomized rats. Results: The results were as follows. 1. SGJT decreased the viability of MDA-MB-231 cells in a dose-dependent manner. 2. The level of serum GOT, GPT in SGJT-treated group showed significant decrease in comparison with control group. 3. Phosphorylation of $ER{\alpha}$, ERK, AKT by SGJT in MDA-MB-231 cells were increased. 4. Uterus index in SGJT-treated group showed significant increase in comparison with control group. The level of serum estradiol-$17{\beta}$ in SGJT-treated group showed significant increase in comparison with control group. Phosphorylation of ERK or AKT by SGJT in the uterus of ovariectomized rats was increased significantly. 5. Uterus index and the level of serum estradiol-$17{\beta}$ in SGJT-treated group increased at higher rates in comparison with estrogen-treated group. Conclusions: Taken together, we suggest that SGJT has been shown to be effective in preventing postmenopausal uterine and ovarian degeneration and curing postmenopausal low estrogen related symptoms.

Tributyltin increases the expression of apoptosis- and adipogenesis-related genes in rat ovaries

  • Lee, Hyo-Jin;Lim, So-Jeong;Yun, Su-Jin;Yoon, A-Young;Park, Ga-Young;Yang, Hyun-Won
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.39 no.1
    • /
    • pp.15-21
    • /
    • 2012
  • Objective: Tributyltin (TBT), an endocrine disrupting chemical, has been reported to decrease ovarian function by causing apoptosis in the ovary, but the mechanism is not fully understood. Therefore, we examined whether TBT increases the expression of adipogenesis-related genes in the ovary and the increased expression of these genes is associated with apoptosis induction. Methods: Three-week-old Sprague-Dawley rats were orally administered TBT (1 or 10 mg/kg body weight) or sesame oil as a control for 7 days. The ovaries were obtained and weighed on day 8, and then they were fixed for terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) or frozen for RNA extraction. Using the total RNA of the ovaries, adipogenesis- and apoptosis-related genes were analyzed by real-time polymerase chain reaction (PCR). Results: The ovarian weight was significantly decreased in rats administered 10 mg/kg TBT compared to that in control rats. As determined by the TUNEL assay, the number of apoptotic follicles in ovary was significantly increased in rats administered 10 mg/kg TBT. The real-time PCR results showed that the expression of adipogenesis-related genes such as $PPAR{\gamma}$, ${\alpha}P2$, CD36, and PEPCK was increased after TBT administration. In addition, apoptosis-related genes such as $TNF{\alpha}$ and TNFR1 were expressed more in the TBT-administered rats compared with the control rats. Conclusion: The present study demonstrates that TBT induces the expression of adipogenesis- and apoptosis-related genes in the ovary leading to apoptosis in the ovarian follicles. These results suggest that the increased expression of adipogenesis-related genes in the ovary by TBT exposure might induce apoptosis resulting in a loss of ovarian function.

Studies on the Effect of Ovarian Steroid Hormones on the Differentiation and Metabolism in the Rat Uterine Endometrium (흰쥐 자궁내막조직세포의 분화와 대사에 미치는 난소 스테로이드 호르몬의 영향에 관한 연구)

  • Kim, Sung-Rye
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.14 no.2
    • /
    • pp.149-158
    • /
    • 1987
  • The present investigation has been undertaken to understand the mechanism of implantation process, by demonstrating the role of ovarian steroids in the differentiation of uterine endometrium for implantation. In particular, an attempt was made to examine the activity of alkaline phosphatase (ALP) in the either luminal, stroma or endometrium tissue sites under the pseudopregnant state induced by ovarian steroid hormones. Attempt was also made to demonstrate the correlate function of ovarian steroids with the cAMP concentration and prolactin level. The higher activity of ALP in the uterine endometrium was observed on day 3. However, the higher activity of ALP in the stroma and epithelium was observed on Day 6. This study, therefore, clearly demonstrates that progesterone is consecutive effect in stroma differ entiation. The cAMP concentrations on Day 3 treated with E or P was lower than those of control. On the other hand concentration on Day 6 treated with hormones was increased than those of control. It is, therefore, concluded that the concentration of cAMP in the uterine tissue undergoing differentiation is decreased. The prolactin level of the treated groups was the lower levels than those of the control groups. It is indicated that there is no effect of ovarian steroid hormone on the prolactin synthesis in this pseudopregnant state.

  • PDF

The Effect of Polycystic Ovarian Follicular Fluid on Sperm Motility in Human in vitro Fertilization (인간체외수정시술시 다낭성난포종 난포액이 정자의 운동성에 미치는 영향)

  • Kim, Yeon-Hee;Lee, Sang-Hoon;Hur, Min
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.2
    • /
    • pp.151-157
    • /
    • 2000
  • Objective: The purpose of this study was to evaluate the effect of polycystic ovarian follicular fluid on sperm motility in human in vitro fertilization (IVF). Methods: From May, 1998 to July, 1999, 55 patients who complained of infertility were involved in this study. We obtained ovarian follicular fluids from the patients by ultrasono-guided aspiration. Subjects were divided into two groups. 20 patients who had polycystic ovarian disease were belong to study group, and 25 patients who had normal ovarian follicular fluid were belong to control group. The follicular fluid dilution was done with Ham's fluid as 10%, 20%, 50%, 100%. The sperm motility was analyzed by CASA at 6hr and 12hr after incubation in follicular fluids. Results: The levels of average path velocity (VAP) in all concentration fluid didn't show significant difference between study and control group. The other parameters including curvilinear velocity (VCL), amplitude of lateral head displacement (ALH), and linerity (LIN) were didn't show any significant difference between both groups. Conclusion: PCOD fluid had seemed to have an adverse effect on the sperm biological function. But, this study showed that PCOD fluid had no different effect on sperm motility with normal follicular fluid.

  • PDF

The Chronic and Unpredictable Stress Suppressed Kisspeptin Expression during Ovarian Cycle in Mice

  • Kim, Seung-Joon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.40-49
    • /
    • 2019
  • Chronic and unpredictable stress can disrupt the female reproductive system by suppression for secretion of gonadotrophin-releasing hormone (GnRH) and gonadotrophin, resulted in ovarian malfunction and infertility. In the recent days, kisspeptin has been highly highlighted as a hypothalamic peptide which directly stimulates synthesis and release for GnRH. However, in spite of the key role of kisspeptin in the female reproductive system, little information is still available on the changes of its expression during ovarian cycle under stressed condition. Therefore, we induced chronic and unpredictable stress series to the female mice to analyze kisspeptin expression in the brain and ovary. Stressed mice exhibited changes of behavior and body weight gain during the stress assessment, which suggested that the present stress model in mice was successfully established. In the brain level, kisspeptin expression was attenuated than control. In the ovary level, the stressed mice displayed irregularly shrunk oocytes with broken zona pellucida throughout the follicle stages, pyknotic granulosa cells, decreased number of developing follicles and increased number of atretic follicles than the control. In case of kisspeptin expression in the whole ovary tissue, the expression level was decreased in the stressed mice. In detail, the less intensity of kisspeptin expression in the antral follicles phase was observed in the stressed mice than control mice, indicating that local function of kisspeptin during ovary cycle is highly associated with development of ovarian follicles. We expect that the present study has important implications for the fields of reproductive biology.

Mitochondria in reproduction

  • Min-Hee Kang;Yu Jin Kim;Jae Ho Lee
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.50 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • In reproduction, mitochondria produce bioenergy, help to synthesize biomolecules, and support the ovaries, oogenesis, and preimplantation embryos, thereby facilitating healthy live births. However, the regulatory mechanism of mitochondria in oocytes and embryos during oogenesis and embryo development has not been clearly elucidated. The functional activity of mitochondria is crucial for determining the quality of oocytes and embryos; therefore, the underlying mechanism must be better understood. In this review, we summarize the specific role of mitochondria in reproduction in oocytes and embryos. We also briefly discuss the recovery of mitochondrial function in gametes and zygotes. First, we introduce the general characteristics of mitochondria in cells, including their roles in adenosine triphosphate and reactive oxygen species production, calcium homeostasis, and programmed cell death. Second, we present the unique characteristics of mitochondria in female reproduction, covering the bottleneck theory, mitochondrial shape, and mitochondrial metabolic pathways during oogenesis and preimplantation embryo development. Mitochondrial dysfunction is associated with ovarian aging, a diminished ovarian reserve, a poor ovarian response, and several reproduction problems in gametes and zygotes, such as aneuploidy and genetic disorders. Finally, we briefly describe which factors are involved in mitochondrial dysfunction and how mitochondrial function can be recovered in reproduction. We hope to provide a new viewpoint regarding factors that can overcome mitochondrial dysfunction in the field of reproductive medicine.

Role of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Ovarian Function and Their Importance in Mammalian Female Fertility - A Review

  • Castro, Fernanda Cavallari de;Cruz, Maria Helena Coelho;Leal, Claudia Lima Verde
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1065-1074
    • /
    • 2016
  • Growth factors play an important role during early ovarian development and folliculogenesis, since they regulate the migration of germ cells to the gonadal ridge. They also act on follicle recruitment, proliferation/atresia of granulosa cells and theca, steroidogenesis, oocyte maturation, ovulation and luteinization. Among the growth factors, the growth differentiation factor 9 (GDF9) and the bone morphogenetic protein 15 (BMP15), belong to the transforming growth factor beta (TGF-${\beta}$) superfamily, have been implicated as essential for follicular development. The GDF9 and BMP15 participate in the evolution of the primordial follicle to primary follicle and play an important role in the later stages of follicular development and maturation, increasing the steroidogenic acute regulatory protein expression, plasminogen activator and luteinizing hormone receptor (LHR). These factors are also involved in the interconnections between the oocyte and surrounding cumulus cells, where they regulate absorption of amino acids, glycolysis and biosynthesis of cholesterol cumulus cells. Even though the mode of action has not been fully established, in vitro observations indicate that the factors GDF9 and BMP15 stimulate the growth of ovarian follicles and proliferation of cumulus cells through the induction of mitosis in cells and granulosa and theca expression of genes linked to follicular maturation. Thus, seeking greater understanding of the action of these growth factors on the development of oocytes, the role of GDF9 and BMP15 in ovarian function is summarized in this brief review.

Effect of Evodiae Fructus on the ovarian function and gene expression of caspase-3, MAP kinase and MPG in female mice (오수유 투여가 자성생쥐의 생식능력과 caspase-3, MAPK 및 MPG유전자 발현에 미치는 영향)

  • Lee, Ja-Young;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.22 no.2
    • /
    • pp.60-78
    • /
    • 2009
  • Purpose: These experiments were undertaken to evaluate the effect of administration of Evodiae Fructus on ovarian functions and differential gene expressions related caspase-3, MAPK and MPG in female mice. Methods: We administered the Evodiae Fructus to 6-week-old female ICR mice for 4, 8, or 12 days. With different concentration of Evodiae Fructus, the female mice were injected PMSG and hCG for ovarian hyperstimulation. The mice divided into 3 groups for each experiment. We chose the caspase-3 for cell apoptosis, MAPK and MPG genes for cell viability and DNA repair. Results: In case of 4, 8, 12 day of Evodiae Fructus, we were examined the mean number of total ovulated oocytes and the number of morphologically normal oocytes. We were also examined the embryonic developmental competence in vitro. In addition we were also examined the differential expression of cell viability related genes, caspase-3, MAPK and MPG according to concentration and duration of Evodiae Fructus administration. MPG gene expressions for cell viability and DNA repaie were increased in dose dependent manner than that of control group in 4-day administration group. Conclusion: It is suggested that the medication of Evodiae Fructus has beneficial effect on reproductive functions of female mice via promotion of cell proliferation.

Angiopoietin-1 and -2 and vascular endothelial growth factor expression in ovarian grafts after cryopreservation using two methods

  • Cho, In Ae;Lee, Yeon Jee;Lee, Hee Jung;Choi, In Young;Shin, Jeong Kyu;Lee, Soon Ae;Lee, Jong Hak;Choi, Won Jun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.45 no.3
    • /
    • pp.143-148
    • /
    • 2018
  • Objective: The favored method of preserving fertility in young female cancer survivors is cryopreservation and autotransplantation of ovarian tissue. Reducing hypoxia until angiogenesis takes place is essential for the survival of transplanted ovarian tissue. The aim of this study was to investigate the role of angiopoietin-1 (Angpt-1), angiopoietin-2 (Angpt-2), and vascular endothelial growth factor (VEGF) in ovarian tissue grafts that were cryopreserved using two methods. Methods: Ovarian tissues harvested from ICR mice were divided into three groups: group I (control), no cryopreservation; group II, vitrification in EFS (ethylene-glycol, ficoll, and sucrose solution)-40; and group III, slow freezing in dimethyl sulfoxide. We extracted mRNA for VEGF, Angpt-1, and Angpt-2 from ovarian tissue 1 week following cryopreservation and again 2 weeks after autotransplantation. We used reverse transcriptase-polymerase chain reaction to quantify the levels of VEGF, Angpt-1, and Angpt-2 in the tissue. Results: Angpt-1 and Angpt-2 expression decreased after cryopreservation in groups II and III. After autotransplantation, Angpt-1 and Angpt-2 expression in ovarian tissue showed different trends. Angpt-1 expression in groups II and III was lower than in group I, but Angpt-2 in groups II and III showed no significant difference from group I. The vitrified ovarian tissues had higher expression of VEGF and Angpt-2 than the slow-frozen ovarian tissues, but the difference was not statistically significant. Conclusion: Our results indicate that Angpt-2 may play an important role in ovarian tissue transplantation after cryopreservation although further studies are needed to understand its exact function.