• Title/Summary/Keyword: ovarian follicle

Search Result 266, Processing Time 0.025 seconds

Kisspeptin regulates the development of caprine primordial follicles in vitro

  • Magamage, Manjula Priyantha Sumith;Sathagopam, Sriravali;Avula, Kiran;Madushanka, Di Neththi Nimesh;Velmurugan, Sathya
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.51-58
    • /
    • 2021
  • Kisspeptin, a neuropeptide and the master controller of reproductive axis upstream to GnRH neurons, and its receptor are also expressed in extra-hypothalamic tissues, such as ovaries. As systemic kisspeptin has been shown to modulate follicular dynamics in cattle, we hypothesized that kisspeptin has direct actions on the ovarian follicular development. We also hypothesized that kisspeptin regulation of primordial follicle development is via modulation of VEGF expression. In order to test these hypotheses, we cultured caprine ovarian cortical strips in vitro for 7 days with supplementation of kisspeptin at 1, 10 and 100 µM concentration and observed the development of primordial follicles into intermediate, primary and secondary follicles. We also studied the alteration in the expression profile of VEGF and VEGF transcript variant 2 mRNA during follicular development in the presence of kisspeptin. We confirmed the presence of GPR54 in goat ovaries in our preliminary studies. Supplementation of kisspeptin at 1 and 10 µM concentration facilitated the development of primordial follicles into intermediate, primary and secondary follicles with less number of degenerated follicles while the same at 100 µM resulted in degeneration of follicles. We observed a drastic increase in the expression profile of VEGF and VEGF transcript variant 2 mRNA upon culture which was independent of kisspeptin treatment. In conclusion, our studies show that kisspeptin facilitates ovarian primordial development in vitro.

Expression of Proapoptotic Bcl-2 Family Member in the Mouse Ovary (I) (생쥐 난소에서 Bcl-2계 세포고사인자에 관한 연구 (I))

  • Lee, Yu-Il;Lee, Jin;Chun, Sang-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.1
    • /
    • pp.47-55
    • /
    • 2003
  • Objectives: Bok, Bcl-2-related ovarian killer, is a proapoptotic Bcl-2 family protein identified in the ovary based on its dimerization with the antiapoptotic protein Mcl-1. The present study examined the hormonal regulation and localization of Bok messenger RNA levels in the mouse ovary during the follicle development. Methods: The animals were implanted subcutaneously with Silastic brand capsules containing the synthetic estrogen, DES at $21{\sim}23$ days of age. Ovaries were collected $1{\sim}3$ days after implantation for RNA analysis and in situ hybridization. Some mice were removed capsule for $1{\sim}2$ days to induce ovarian follicle apoptosis. Ovaries were also collected from 26 day-old immature mice at various times after treatment with 10 IU PMSG. Some mice received a single intraperitoneal injection of 10 IU hCG to induce ovulation, and ovaries were obtained at different time intervals for Northern blot and in situ hybridization analysis, respectively. Results: Treatment of immature mice with diethylstilbestrol (DES) for $24{\sim}48$ h increased ovarian Bok mRNA levels. Bok mRNA was remained the same levels in mice removed DES for $24{\sim}48$ h to induce apoptosis. High signals of Bok mRNA after DES treatment were detected in granulosa cells of early antral follicles. Treatment of immature mice with PMSG for 12 h increased markedly ovarian Bok mRNA expression which was detected mainly in preantral and atretic follicles. Interestingly, low levels of Bok mRNA were also expressed in granulosa cells of preovulatory follicles. Treatment of PMSGprimed mice with hCG stimulated strongly ovarian Bok mRNA expression at $6{\sim}9$ h. At that time, Bok mRNA was expressed in granulosa cells of atretic and small growing follicles. Conclusion: These results demonstrate that Bok is one of proapoptotic Bcl-2 members expressed in early growing and atretic follicles during the ovarian follicular development. Gonadotropins induce a transient increase of Bok gene expression in granulosa cells of preantral and preovulatory follicles indicating some role in the ovulatory process.

Ovarian TGF-β1 Regulates Yolk Formation Which Involve in Egg Weight of Korean Native Ogol Chicken

  • Kang, W.J.;Seo, D.S.;Ko, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.11
    • /
    • pp.1546-1552
    • /
    • 2002
  • Proliferation and differentiation of ovarian cells are regulated by gonadotrophins and various intraovarian factors, with many of their actions dependent on growth factors. Transforming growth factor-$\beta$ (TGF-$\beta$) has been reportedly involved in the regulation of ovarian follicular development. The overall objectives of the present study were to examine the influence of TGF-$\beta$1 expression in ovarian follicular development or yolk formation and to investigate the association of egg weight with ovarian TGF-$\beta$1 expression at 60 wk. Egg weights of 70 Korean Native Ogol Chicken (KNOC) were recorded from 20 to 60 wk. Ovaries were taken at 60 wk, and TGF-$\beta$1 was measured with ELISA, respectively. Based on egg weight up to 60 wk and TGF-$\beta$1 expression in ovary, the chickens were divided into high and low groups. Egg weights and follicle weight in the high TGF-$\beta$1 group were higher than those in the low groups. Also, TGF-$\beta$1 expression and follicle weight in high egg weight group were higher than those in the low groups. Taken together, the results indicate that TGF-$\beta$1 is associated with egg weight in KNOC. This association of TGF-$\beta$1 with egg weight in KNOC supports the report that TGF-$\beta$ is mainly involved in the development and differentiation of follicles in the poultry. Further studies about other endocrine factors related to yolk formation are required to fully understand the endocrine mechanism of egg weight in Korean Native Ogol Chickens.

Induction of Ovulation by Intermittent Subcutaneous Injection of Pure Follicle-Stimulating Hormone in Polycystic Ovarian Syndrome (다낭성난소 증후군 환자의 Pure Follicle-Stimulating Hormone 간헐 피하주사법을 이용한 배란유도)

  • Kim, D.S.;Shin, S.J.;Kim, H.Y.;Lee, H.Y.;Park, J.Y.;Park, Y.S.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.20 no.2
    • /
    • pp.125-130
    • /
    • 1993
  • Polycystic ovarian syndrome (PCOS) patients have a characteristic of high leuteinizing hormone (LH) to follicle -stimulating hormone (FSH) ratio. Usually, human menopausal gonadotropin (hMG) is used to induce ovulation in clomiphene citrate-resistant PCOS patients. However, HMG contains two components, namely, LH and FSH, with 50%, respectively. Therefore, FSH is theoretically recommended to stimulate follicular maturation. From the pituitary, LH is secreted by pulsatile pattern. So, we have been using intermittent subcutaneous injection of pure FSH for ovulation induction in 10 PCOS patients from March, 1990 to August, 1992. We obtained good results by intermittent subcutaneous injection of pure FSH. Ovulation is 100% per patient, and 88.2% per cycle. Pregnancy rate is 80% per patient, and 23.5% per cycle. Ovarian hyperstimulation syndrome (OHSS) is 50% per patient, 41.2% per all cycles, and 46.7% per all ovulated cycles. In comparison with HMG, pregnancy rate per cycle is relatively low. But, ovulation rate and pregnacy rate per person is higher than HMG. Because of the strict check of ovaries by the vaginal ultrasonography, OHSS rate is relatively high.

  • PDF

Morphological Criteria of Bovine Ovaries for Predicting Retrieval Efficiency of Preantral Follicles

  • Choi, Moon Hwan;Oh, Ji Hwan;Kim, Tae Min;Han, Jae Yong;Lim, Jeong Mook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.12
    • /
    • pp.1711-1715
    • /
    • 2006
  • To predict the number of preantral (primordial, primary and secondary) follicles retrieved from bovine ovaries, we examined the relationship between morphological parameters of ovaries and number of preantral follicles retrieved mechanically. The preantral follicles were retrieved mechanically by slicing ovarian tissue and the influences of size of the ovaries, number of antral follicles, and presence of cystic follicle and corpus luteum on the retrieval were evaluated. Total 77 ovaries were used and significant (p<0.05) relationship was detected between the number of antral follicles and the presence of cystic follicles, and the retrieval number. More preantral follicles were retrieved from the ovaries having more than 20 antral follicles than those having less than 20 antral follicles (17,760${\pm}$5,637 vs. 3,689${\pm}$537) in the ovarian cortex. The retrieval number was significantly reduced in cystic ovaries compared with non-cystic ovaries (5,167${\pm}$825 vs. 20,631${\pm}$6,507). However, neither ovary size (<3.5, 3.5 to 4.0, 4.0 to 4.5 and >4.5 cm) nor the presence of corpus luteum affected the follicle retrieval. In conclusion, the number of preantral follicles retrieved from the ovaries can simply be predicted by the number of antral follicles and the presence of cystic follicles in the ovarian cortex.

Follicular Degeneration After Treatment of Follicle Stimulating Hormone in Prepubertal Mouse Ovary (미성숙 생쥐에서 난포성숙호르몬 처리에 의한 난포의 퇴화)

  • 이창주;고경수;김지향;김진규;윤용달
    • Development and Reproduction
    • /
    • v.4 no.1
    • /
    • pp.13-17
    • /
    • 2000
  • Follicle stimulating hormone (FSH) stimulates follicle growth, and inhibits the follicle atresia in the immature rodent ovaries. The present study was carried out to know the histological changes of ovarian follicles after FSH treatment in the prepubertal mice. Ten i.u. of recombinant FSH was i.p. injected on 3 weeks old mice. After the treatment, at 1, 2 and 3 days, left ovaries were collected for the histological study. The atretic ratio of preantral follicles increased with time after FSH treatment. However, in the case of antral follicles, there was no significant change in the ratio. The degenerating follicles contained apoptotic granulosa cells, macrophage, and polymorphonuclear leukocytes in the follicular cavity. The present results suggest that follicular degeneration caused by FSH hyperstimulation could be mediated by apoptosis as well as the acute inflammation.

  • PDF

Expression of Membrane Fusion Related Genes in Mouse Ovary (마우스 난소에서 막융합 관련 유전자의 발현)

  • Jung, Bok-Hae;Sung, Hyun-Ho;Park, Chang-Eun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.1
    • /
    • pp.8-14
    • /
    • 2016
  • Granulosa cells surround the oocyte within the ovarian follicle and play an essential role in creating conditions required for oocyte as well as follicular development. The current study was conducted to examine the gene expression profile of mouse ovaries during the primordial to primary follicle transition process. Total RNAs from mouse ovaries on day 5 and day 12 were synthesized cDNA using annealing control primers. The DEGs were cloned and their identities were analyzed by BLAST search. The Plekha5 and Anxa11 were highly expressed in primary follicle stage. By contrast, their expression was increased in granulosa cells at the primary follicle stage. We have successfully discovered a list of genes expressed in day 5 and day 12 ovaries and confirmed that some of them are differentially expressed in PMF and/or PRI. This is a spatial-temporal regulatory mechanism on the ovarian folliculogenesis through membrane fusion. The gene expression profile from the current study would provide insight for future study on the mechanism(s) involved in primordial-primary follicular transition. This will provide information for identification of the mechanism of ovarian dysfunction.

Immunohistological expression of cytochrome P450 1A2 (CYP1A2) in the ovarian follicles of prepubertal and pubertal rat

  • Hwang, Jong-Chan;Park, Byung-Joon;Kim, Hwan-Deuk;Baek, Su-Min;Lee, Seoung-Woo;Jeon, Ryoung-Hoon;Jang, Min;Bae, Seul-Gi;Yun, Sung-Ho;Park, Jin-Kyu;Kwon, Young-Sam;Kim, Seung-Joon;Lee, Won-Jae
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.329-337
    • /
    • 2020
  • Cytochrome P450 1A2 (CYP1A2) is a member of the cytochrome P450 superfamily enzymes in mammals and plays a major role in metabolizing endogenous hormones in the liver. In recent days, CYP1A2 expression has been found in not only the liver but also other tissues including the pancreas and lung. However, little information is available regarding the expression of CYP1A2 in the ovary, in spite of the facts that the ovarian follicle growth and atresia are tightly associated with controls of endocrine hormonal networks. Therefore, the expression of CYP1A2 in the ovaries of prepubertal and pubertal rats was investigated to assess its expression pattern and puberty-related alteration. It was demonstrated that the expression level of CYP1A2 was significantly (p < 0.01) higher in the pubertal ovaries than prepubertal counterparts. At the ovarian follicle level in both groups, whereas CYP1A2 expression was less detectable in the primordial, primary and secondary follicles, the strongly positive expression of CYP1A2 was localized in the granulosa cell layers in the antral and pre-ovulatory follicles. However, the ratio of CYP1A2-positive ovarian follicle was significantly (p < 0.01) higher in the ovary of pubertal group (73.1 ± 3.1%) than prepubertal one (41.0 ± 10.5%). During the Immunofluorescence, expression of CYP1A2 was mainly localized in Fas-positive follicles, indicating the atretic follicles. In conclusion, these results suggested that CYP1A2 expression was mainly localized at the atretic follicular cells and affected by the onset of puberty. Further study is still necessary but we hypothesize that CYP1A2 expresses in the atretic follicles to metabolize residue of the reproductive hormones. These findings may have important implications for the fields of reproductive biology of animals.

Survival of isolated human preantral follicles after vitrification: Analyses of morphology and Fas ligand and caspase-3 mRNA expression

  • Wiweko, Budi;Soebijanto, Soegiharto;Boediono, Arief;Mansyur, Muchtaruddin;Siregar, Nuryati C;Suryandari, Dwi Anita;Aulia, Ahmad;Djuwantono, Tono;Affandi, Biran
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.46 no.4
    • /
    • pp.152-165
    • /
    • 2019
  • Objective: This study aimed to examine the effect of vitrification on apoptosis and survival in human preantral follicles after thawing. Methods: This experimental study was conducted at an acute tertiary care hospital from March 2012 to April 2013. Ovaries were sliced into 5 × 5 × 1-mm pieces and divided into the following three groups: preantral follicle isolation, ovarian tissue vitrification-warming followed by follicle isolation, and immunohistochemistry of fresh ovarian tissue. For statistical analyses, the Student t-test, chi-square test, Kruskal-Wallis test, and Kaplan-Meier survival analysis were used. Results: A total of 161 preantral follicles (70% secondary) were collected from ovarian cortex tissue of six women between 30 and 37 years of age who underwent oophorectomy due to cervical cancer or breast cancer. There were no significant differences in the follicular morphology of fresh preantral follicles and vitrified follicles after thawing. The mean Fas ligand (FasL) mRNA expression level was 0.43 ± 0.20 (relative to β-actin) in fresh preantral follicles versus 0.51 ± 0.20 in vitrified follicles (p= 0.22). The mean caspase-3 mRNA expression level in fresh preantral follicles was 0.56 ± 0.49 vs. 0.27 ± 0.21 in vitrified follicles (p= 0.233). One vitrified-thawed secondary follicle grew and developed to an antral follicle within 6 days of culture. Conclusion: Vitrification did not affect preantral follicle morphology or mRNA expression of the apoptosis markers FasL and caspase-3. Further studies are required to establish whether vitrification affects the outcomes of in vitro culture and the maturation of preantral follicles.

Impact of vitamin D3 supplementation on the in vitro growth of mouse preantral follicles

  • Shim, Yoo Jin;Hong, Yeon Hee;Lee, Jaewang;Jee, Byung Chul
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.4
    • /
    • pp.347-351
    • /
    • 2021
  • Objective: We investigated the impact of vitamin D3 (VD3) supplementation during mouse preantral follicle culture in vitro and the mRNA expression of 25-hydroxylase (CYP2R1), 1-alpha-hydroxylase (CYP27B1), and vitamin D receptor (VDR) in mouse ovarian follicles at different stages. Methods: Preantral follicles were retrieved from 39 BDF1 mice (7-8 weeks old) and then cultured in vitro for 12 days under VD3 supplementation (0, 25, and 50 pg/mL). Follicular development and the final oocyte acquisition were assessed. Preantral follicles were retrieved from 15 other BDF1 mice (7-8 weeks old) and cultured without VD3 supplementation. Three stages of mouse ovarian follicles were obtained (preantral, antral, and ruptured follicles). Total RNA was extracted from the pooled cells (from 20 follicles at each stage), and then reverse transcriptase-polymerase chain reaction was performed to identify mRNA for CYP2R1, CYP27B1, and VDR. Results: The survival of preantral follicles, rates of antrum formation and ruptured follicles (per initiated follicle) and the number of total or mature oocytes were all comparable among the three groups. Both CYP2R1 and CYP27B1 were expressed in antral and ruptured follicles, but not in preantral follicles. VDR was expressed in all three follicular stages. Conclusion: VD3 supplementation in vitro (25 or 50 pg/mL) did not enhance mouse follicular development or final oocyte acquisition. Follicular stage-specific expression of CYP2R1, CYP27B1, and VDR was observed.