• Title/Summary/Keyword: ovarian development

Search Result 462, Processing Time 0.051 seconds

Characterization of Pubertal Development Phases in Female Longtooth Grouper, Epinephelus bruneus via Classification of Bodyweight

  • Ryu, Yong-Woon;Hur, Sang-Woo;Hur, Sung-Pyo;Lee, Chi-Hoon;Lim, Bong-Soo;Lee, Young-Don
    • Development and Reproduction
    • /
    • v.17 no.1
    • /
    • pp.55-62
    • /
    • 2013
  • Puberty is the developmental period which animals obtain the ability of reproducing sexually for the first time in life. In commercially important aquaculture fish species, the onset of puberty is a matter of major interest due to controlling of sexual maturation to improve broodstock management. To investigate pubertal characteristics of female longtooth grouper (Epinephelus bruneus), specimens were classified into three groups by the bodyweight, including 1, 2, and 3 kg group. Thereafter, we focused on ovarian development and level changes of endocrine regulation factors (GnRH, GTHs, steroid hormone). In the non-breeding season (April), the levels of endocrine regulation factors showed increasing trends in accordance with bodyweight gaining; nevertheless, the oocytes were growth phase belongs to almost peri-nucleous stages in all groups. In the breeding season (June), the levels of endocrine regulation factors were fluctuated that decreases in levels of sbGnRH and $FSH{\beta}$ mRNA expressions along with serum $E_2$ concentrations in 3 kg of group. However, $LH{\beta}$ mRNA expression levels sustained increasing trends by the bodyweight. Moreover, the oocytes developed that 2 kg and 3 kg groups obtained plentiful vitellogenic oocytes while 1 kg group was still composed with greater part of pre-vitellogenic oocytes. Especially, the oocytes of 3 kg group reached over 450 ${\mu}m$ of diameters that indicating possibility to enter the final maturations. These results suggest that the progress of pubertal development in female E. bruneus could be classify into three phases via bodyweight, including pre-puberty (1 kg), early-puberty (2 kg) and puberty (3 kg).

Gametogenesis and Reproductive Cycle of the Cockle, Fulvia mutica (Reeve) (새조개, Fulvia mutica (Reeve)의 생식세포형성과정 및 생식주기)

  • CHANG Young Jin;LEE Taek Yuil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.3
    • /
    • pp.241-250
    • /
    • 1982
  • The structure of gonads, gametogenesis and reproductive cycle of the cockle, Fulvia mutice, were studied mainly by histological observation. The materials were monthly sampled in the southern area of Yeosu from October 1980 to September 1981. F. mutica was monoecious. The gonads were situated between the liver tissues and the outer fibronuscular layers compacted by the connective tissue fibers and muscle fibers beneath the outermost layer of simple cuboidal epithelium. The gonad was composed of a number of the ovarian sacs and the testicular tubules which form the tubular structure. Testicular tubules in the mature stage sometimes contained 'testis-ova' The undifferentiated mesenchymal tissues and the eosinophilic cells were abundantly distributed on the germinal epithelium in the early development stage. With the further development of the ovary and testis, these tissues and cells gradually disapprared. The undifferentiated mesenchymal tissues and the eosinophilic cells are related to the growing of the oocytes and spermatocytes . Early multiplicating oogonium was about $10{\mu}m$ in diameter. As the oocytes grow to $27-34\times50-58{\mu}m$ by increasing cytoplasm, the oocytes connected to the basement membrane by their egg-stalks. The ripe eggs were about $60{\mu}m$ in diameter and they were surrounded by gelatinous membrane. Most male germ cells in mature stage were transformed into the spermatozoa and they formed the sperm bundles. After spawning, undischarged ripe eggs and spermatozoa remained in the ovarian sac and the testicular tubule respectively for some time, then they finally degenerated. Especially the early spent ovarian sacs in May did not contract significantly and then they took part in the secondary maturation within two or three months during the summer season. The monthly changes of the fatness well agreed with the reproductive cycle. The reproductive cycle of F. mutica could be classified into six successive stages : multiplicative, growing, mature, spent, degenerative and recovery stage. It seems that the spawning season is closely rotated to the water temperature, and the spawning occurs from May to October at about $20^{\circ}C$ in water temperature. The peak spawning seasons appeared twice a year between June and July and in September. Acknowledgement The authors wish to express their gratitude to Dr. Kim, In Bae, Dr. Chun, Seh Kyu and Dr. Yoo, Sung Kyoo of National Fisheries University of Busan and Mr. Min, Byoung Seo of National fisheries Research and Development Agency for their critical reading of the manu script.

  • PDF

Germ Cell Differentiations during Oogenesis and Reproductive Cycle in Female Jicon Scallop, Chlamys farreri on the West Coast of Korea (한국 서해산 암컷 비단가리비, Chlamys farreri의 난형성과정 중 생식세포 분화 및 생식주기)

  • Park, Ki-Yeol;Lee, Ki-Young
    • Development and Reproduction
    • /
    • v.12 no.2
    • /
    • pp.195-202
    • /
    • 2008
  • The gonadosomatic index, germ cell differentiation, and the ovarian cycle in female jicon scallop, Chlamys farreri were studied by histologic and cytologic observations. In the early vitellogenic oocyte, the Golgi complex, mitochondria and rough endoplasmic reticulum were involved in the formation of lipid droplets. In the late vitellogenic oocyte, exogenous substances, namely, glycogen particles and lipid granular substances appeared in the germinal epithelium passed into the ooplasm through the microvilli of the envelope. Yolk granules and multivesicular bodies were involved in the formation of proteinecious yolk granules in the late vitellogenic oocyte. Vitellogenesis occurrs by endogenous autosynthesis and exogenous heterosynthesis. The auxiliary cells function as nutritive cells in the formation and development of the previtellogenic and early vitellogenic oocytes in their earlr stages. Monthly changes in the gonadosomatic index were closely associated with ovarian developmental phases. The reproductive cycle of this species can be classified into five stages: early active stage (January to March), late active stage (March to April), ripe stage (April to August), partially spawned stage (June to August), and spent/inactive stage (August to December). Spawning occurred from June to August, and the major spawning season was from July to August when the sea water was at high temperature.

  • PDF

Seasonal Changes in Biochemical Components of the Adductor Muscle, Digestive Diverticula and the Ovary in Female Chlamys farreri in Relation to the Ovarian Developmental Phases

  • Kim, Hyun-Jin;Chung, Ee-Yung;Park, Ki-Yeol;Kim, Eun-Jong
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2005.07a
    • /
    • pp.51-51
    • /
    • 2005
  • We inestigated the reproductive cycle with ovarian development of Chlamys farreri by histological observations, and seasonal changes in biochemical components of the adductor muscle, digestive diverticula and ovary were studied by biochemical analysis. The reproductive cycle of this species can be classified into five successive stages: early active stage (January to March), late active stage (March to April), ripe stage (April to August), partially spawned stage (June to August) and spent/inactive stage (August to January). According to ANOVA test, there were significant differences (p<0.05) in total protein, total lipid and glycogen contents among months for all of the adductor muscle, digestive diverticula and ovary. Total protein contents in ovary and digestive diverticula showed significant changes(ANOVA, p<0.05) during the study period, while that in the adductor muscle did not. Total protein content was highest in the adductor muscle, followed by ovary, and lowest in digestive diverticula. There was no correlation in total protein content between the adductor muscle and digestive diverticula (p=0.220). But strong positive correlation was found between adductor muscle and ovary (r=0.450, p=0.013). ANOVA showed that there were significant differences in total lipid and glycogen contents among months for all of the adductor muscle, ovary, and digestive diverticula (p<0.05). The monthly changes in total lipid content were highly variable in ovary and digestive gland. High contents of total lipid were foung during April and May-June in ovary, while March and June-July in digestive diverticula. There was a strong negative correlation in total lipid content between ovary and digestive diverticula (r=- 0.397, p=0.030). Unlike total protein of total lipid, glycogen content in the adductor muscle was most dynamic. It showed more than 36-fold changes in the adductor muscle (at most 3-fold change in ovary) during the study period. Glycogen content was higher during May-July in the adductor muscle, While it was higher in March and august in digestive diverticula. There was a strong negative correlation in glycogen content between the adductor muscle and digestive diverticula (r=-0.584, p=0.001).

  • PDF

Ovarian Maturation in Female Ruditapes philippinarum on the West Coast of Korea (한국 서해산 바지락, Ruditapes philippinarum의 난소 성숙)

  • Choi, Ki-Ho;Park, Gab-Man;Chung, Ee-Yung
    • Development and Reproduction
    • /
    • v.9 no.2
    • /
    • pp.123-134
    • /
    • 2005
  • Germ cell development during oogenesis, ovarian maturation and first sexual maturity in female Ruditapes philippinarum were investigated by cytological and histological observations. R. philippinarum is dioecious. During vitellogenesis, the Golgi complex, glycogen particles, and mitochondria were involved in the formation of lipid droplets and lipid granules in the cytoplasm of the early vitellogenic oocyte. In the late vitellogenic oocyte, cortical granules, the endoplasmic reticulum, and mitochondria were involved in the formation of proteid yolk granules in the cytoplasm. At this time, exogenous lipid granular substance and glycogen particles in the germinal epithelium passed into the oocyte through the microvilli of the vitelline envelope. The spawning period was once a year between early June and early October, and the main spawning occurred between July and August when seawater temperature was approximately $20^{\circ}C$. The reproductive cycle of this species can be categorized into five successive stages: early active stage(January to March), late active stage(Februaryto May), ripe stage(April to August), partially spawned stage(May to October), and spent/inactive stage (August to February). Percentages of female clams at first sexual maturity of $15.1{\sim}20.0mm$ in shell length were 52.6%(50% of the rate of group maturity was 17.83mm in length), and 100% for the clams >25.1mm.

  • PDF

Differential Activities of FOXL2 and Its Mutants on SF-1-Induced CYP19 Transcriptional Activation (SF-1을 매개한 CYP19의 전사활성에 미치는 FOXL2 야생형과 돌연변이형의 차별적 영향)

  • Park, Mi-Ra;Kim, Ah-Young;Na, Soon-Young;Kim, Hong-Man;Lee, Kang-Seok;Bae, Jee-Hyeon;Ko, Jeong-Jae
    • Development and Reproduction
    • /
    • v.14 no.2
    • /
    • pp.91-97
    • /
    • 2010
  • FOXL2 is a winged-helix/forkhead (FH) domain transcription factor, and mutations in FOXL2 gene are responsible for blepharophimosis-ptosis-epicanthus inversus syndrome (BPES). BPES is an autosomal dominant genetic disease. BPES type I patients exhibit both premature ovarian failure (POF) and eyelid malformation, while only the eyelid defect is observed in BPES type II. FOXL2-null ovaries showed a blockage of granulosa cell differentiation, suggesting that FOXL2 plays an essential role for proper ovarian folliculogenesis. Previously, we screened for FOXL2-interacting proteins and identified steroidogenic factor-1 (SF-1) which is known to be required for gonad development and transactivates steroidogenic enzymes including CYP19. In the present study, we demonstrated that FOXL2 transactivates CYP19 and stimulated the transcriptional activation of CYP19 induced by SF-1. In contrast, FOXL2 mutants found in BPES type I and II exhibited compromised abilities to enhance CYP19 induction mediated by SF-1. Thus, this study provides a functional difference between wild-type FOXL2 and its mutants which may aid to understand pathophysiology of BPES elicited by FOXL2 mutations.

Seasonal Occurrence and Ovarian Development of Bean Bug, Riptortus clavatus (톱다리개미허리노린재의 발생소장과 난소발육)

  • Huh, Hye-Soon;Huh, Wan;Bae, Soon-Do;Park, Chung-Gyoo
    • Korean journal of applied entomology
    • /
    • v.44 no.3 s.140
    • /
    • pp.199-205
    • /
    • 2005
  • Seasonal occurrence and ovarian development of the bean bug, Riptortus clavatus Thunberg (Heteroptera: Alydidae), were studied at a soybean field and an university campus in which host plants are less available for the bug in Gyeongnam province with aggregation pheromone traps in 2004. It was assumed that the bug passed three generations per year at the university campus. Adults of the 1st generation might occur from early July to early August and that of the 2nd one from mid August to late September. Adults of the 3rd generation occurred from early October to mid November, entered reproductive diapause without carrying eggs in the ovaries of females during winter, and resumed activity from late March of the next year. Full-grown eggs in the ovaries of the overwintered females were first observed at the 1st half of May. Two peaks of occurrence, from early August to mid September and from mid October to mid November, were shown at soybean field that was sowed on May 24. The two peaks almost corresponded to those of the 2nd and 3rd generations at the university campus, respectively.

Identification of genes involved in inbreeding depression of reproduction in Langshan chickens

  • Xue, Qian;Li, Guohui;Cao, Yuxia;Yin, Jianmei;Zhu, Yunfen;Zhang, Huiyong;Zhou, Chenghao;Shen, Haiyu;Dou, Xinhong;Su, Yijun;Wang, Kehua;Zou, Jianmin;Han, Wei
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.975-984
    • /
    • 2021
  • Objective: Inbreeding depression of reproduction is a major concern in the conservation of native chicken genetic resources. Here, based on the successful development of strongly inbred (Sinb) and weakly inbred (Winb) Langshan chickens, we aimed to evaluate inbreeding effects on reproductive traits and identify candidate genes involved in inbreeding depression of reproduction in Langshan chickens. Methods: A two-sample t-test was performed to estimate the differences in phenotypic values of reproductive traits between Sinb and Winb chicken groups. Three healthy chickens with reproductive trait values around the group mean values were selected from each of the groups. Differences in ovarian and hypothalamus transcriptomes between the two groups of chickens were analyzed by RNA sequencing (RNA-Seq). Results: The Sinb chicken group showed an obvious inbreeding depression in reproduction, especially for traits of age at the first egg and egg number at 300 days (p<0.01). Furthermore, 68 and 618 differentially expressed genes (DEGs) were obtained in the hypothalamus and ovary between the two chicken groups, respectively. In the hypothalamus, DEGs were mainly enriched in the pathways related to vitamin metabolism, signal transduction and development of the reproductive system, such as the riboflavin metabolism, Wnt signaling pathway, extracellular matrix-receptor interaction and focal adhesion pathways, including stimulated by retinoic acid 6, serpin family F member 1, secreted frizzled related protein 2, Wnt family member 6, and frizzled class receptor 4 genes. In the ovary, DEGs were significantly enriched in pathways associated with basic metabolism, including amino acid metabolism, oxidative phosphorylation, and glycosaminoglycan degradation. A series of key DEGs involved in folate biosynthesis (gamma-glutamyl hydrolase, guanosine triphosphate cyclohydrolase 1), oocyte meiosis and ovarian function (cytoplasmic polyadenylation element binding protein 1, structural maintenance of chromosomes 1B, and speedy/RINGO cell cycle regulator family member A), spermatogenesis and male fertility (prostaglandin D2 synthase 21 kDa), Mov10 RISC complex RNA helicase like 1, and deuterosome assembly protein 1) were identified, and these may play important roles in inbreeding depression in reproduction. Conclusion: The results improve our understanding of the regulatory mechanisms underlying inbreeding depression in chicken reproduction and provide a theoretical basis for the conservation of species resources.

Effects of Gonadotropin Releasing Hormone on Steroidogenesis and Apoptosis of Human Granulosa-Lutein Cells (생식샘자극호르몬분비호르몬이 사람 과립-황체화 세포의 스테로이드 생성과 세포자연사에 미치는 영향)

  • Lee, Hyo-Jin;Yang, Hyun-Won
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.353-362
    • /
    • 2009
  • GnRH and its receptor are known to express locally in the ovary and to regulate the ovarian function by affecting on granulosa and lutein cells. It has been reported that GnRH directly causes apoptosis in the granulosa and lutein cells of the ovary. However, whether the apoptosis of the cells by GnRH is recovered by FSH as an anti-apoptotic factor is not yet known. In this study, we evaluated the apoptosis and the production of progesterone $(P_4)$ and estradiol $(E_2)$ after treatment with 5, 50, and 100 ng/$m\ell$ GnRH and 1 IU/ml FSH in the granulosa-lutein cells that are obtained during oocyte-retrieval for IVF-ET. Results of DNA fragment analysis and TUNEL assay demonstrated that DNA fragmentation and the rate of apoptotic cells were increased in a dose-dependent manner showing a significant increase in the cells treated with 100 ng/$m\ell$ GnRH. In addition, we found that FSH suppresses the apoptosis of the cells induced by GnRH. In the results of chemiluminescence assay for $P_4$ and $E_2$, $P_4$ production was decreased by GnRH treatment, whereas $E_2$ production was not changed. We also demonstrated that FSH inhibits the suppressive effect of GnRH on $P_4$ production as the result of apoptosis. The present results suggest that GnRH agonist using in ovarian hyperstimulation protocol might induce the dysfunction of the ovary, but its function could be recovered by FSH. These results also will be expected to use as the basic data to elucidate the physiological role of GnRH and to develop new ovarian hyperstimulation protocols for IVF-ET.

  • PDF

The Effects of Unpredictable Stress on the LHR Expression and Reproductive Functions in Mouse Models (실험적 마우스 모델에서 예측 불가능한 스트레스가 황체형성호르몬 수용체의 발현과 생식기능에 미치는 영향에 관한 연구)

  • Choi, Sung-Young;Park, Jin-Heum;Zhu, Yuxia;Kim, Young-Jong;Park, Jae-Ok;Moon, Changjong;Shin, Taekyun;Ahn, Meejung;Kim, Suk-Soo;Park, Young-Sik;Chae, Hyung-Bok;Kim, Tae-Kyun;Kim, Seung-Joon
    • Journal of Veterinary Clinics
    • /
    • v.31 no.5
    • /
    • pp.394-402
    • /
    • 2014
  • The objective of this study was to investigate the effect of chronic unpredictable stress on the reproductive function and ovarian luteinizing hormone receptor (LHR) expression. 9-week-old C57BL/6 female mice were randomly divided into two groups: control group and stressed group. Mice have been stressed twice a day for 35 days with 12 different stressors which were randomly selected. The results demonstrate that there is significant increase in the anxiety-related behaviors (P < 0.05), decrease body weight gain rate (P < 0.01) and decrease in the average of litter size in stressed mice compared with control group (P < 0.01). Furthermore, the rate of primary, secondary and early antral follicles in stressed mice significantly decreased (P < 0.05), whereas that of atretic follicles significantly increased compared with control mice (P < 0.01). The immunohistochemical analysis revealed that reduced LHR expression in granulosa cells of follicle and luteal cells of corpus luteum in response to chronic unpredictable stress. The western blot analysis revealed significantly decrease in LHR expression in the stressed mice ovaries compared with the control (P < 0.05). These results suggest that ovarian LHR expression affected by chronic unpredictable stress and the modulated ovarian LHR is responsible for ovarian follicular maldevelopment and reproductive dysfunction.