• Title/Summary/Keyword: ovarian development

Search Result 462, Processing Time 0.036 seconds

Effects of High Molecular Weight Water-Soluble Chitosan can in 7tro Fertilization and Ovulation in Mice Fed a High-Fat Diet

  • Choo, Young-Kug;Choi, Hee-Gon;Kim, Jin-Kyung;Kwak, Dong-Hoon;Cho, Jung-Ran;Kim, Ji-Yeoun;Kim, Byung-Jin;Jung, Kyu-Yong;Choi, Bong-Kyu;Shin, Min-Kyo
    • Archives of Pharmacal Research
    • /
    • v.25 no.2
    • /
    • pp.178-183
    • /
    • 2002
  • A high molecular ar weight water-soluble chitosan (WSC) with an average molecular weight of 300 kD and a deacethylation level of over 90% was produced using a simple multi-step-membrane separation process. It is known that WSC prevents obesity induced by a high-fat diet. Consequently, this study investigated whether or not WSC improved the ovarian dysfunction caused by obesity in mice. The mice were fed a high density protein and lipid diet for weeks, followed by the administration of WSC at 480 mg/kg body weight per day for 4 days. Thereafter, the changes in body weight, ovulation rate, in vivo and in vitro fertilization and emboryonic development were measured . WSC markedly reduced the body weight of obese mice fed with a high-fat diet, but not in mice fed with a normal diet. WSC had siginificant effects on the ovulation rate, both the in vivo and in vitro fertilization rates and embryonic development. These results indicate an improvement in the ovarian and oviduct dysfunction caused by obesity, and suggest an adjustment in the internal secretions and metabolic functions.

Impact of vitamin D3 supplementation on the in vitro growth of mouse preantral follicles

  • Shim, Yoo Jin;Hong, Yeon Hee;Lee, Jaewang;Jee, Byung Chul
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.4
    • /
    • pp.347-351
    • /
    • 2021
  • Objective: We investigated the impact of vitamin D3 (VD3) supplementation during mouse preantral follicle culture in vitro and the mRNA expression of 25-hydroxylase (CYP2R1), 1-alpha-hydroxylase (CYP27B1), and vitamin D receptor (VDR) in mouse ovarian follicles at different stages. Methods: Preantral follicles were retrieved from 39 BDF1 mice (7-8 weeks old) and then cultured in vitro for 12 days under VD3 supplementation (0, 25, and 50 pg/mL). Follicular development and the final oocyte acquisition were assessed. Preantral follicles were retrieved from 15 other BDF1 mice (7-8 weeks old) and cultured without VD3 supplementation. Three stages of mouse ovarian follicles were obtained (preantral, antral, and ruptured follicles). Total RNA was extracted from the pooled cells (from 20 follicles at each stage), and then reverse transcriptase-polymerase chain reaction was performed to identify mRNA for CYP2R1, CYP27B1, and VDR. Results: The survival of preantral follicles, rates of antrum formation and ruptured follicles (per initiated follicle) and the number of total or mature oocytes were all comparable among the three groups. Both CYP2R1 and CYP27B1 were expressed in antral and ruptured follicles, but not in preantral follicles. VDR was expressed in all three follicular stages. Conclusion: VD3 supplementation in vitro (25 or 50 pg/mL) did not enhance mouse follicular development or final oocyte acquisition. Follicular stage-specific expression of CYP2R1, CYP27B1, and VDR was observed.

Effect of Foeniculi Fructus on the Ovarian Function and Gene Expression of Caspase-3, MAPK and MPG in Female Mice (소회향(小茴香)이 자성(雌性)생쥐의 생식능력과 Caspase-3, MAPK 및 MPG 유전자 발현에 미치는 영향)

  • Jeon, Mi-Hye;Park, Young-Sun;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.23 no.2
    • /
    • pp.38-56
    • /
    • 2010
  • Purpose: This study was designed to evaluate the effect of administration of Foeniculi Fructus on ovarian functions and differential gene expressions related cell viability such as caspase-3, MAPK and MPG in female mice. Methods: We administered the Foeniculi Fructus to 6-week-old female CF-1 mice for 4, 8, 12 days. After administration of Foeniculi Fructus with 0.1, 1, 10, $100\;mg/m{\ell}$ concentration in the comparison of control group with $0\;mg/m{\ell}$, we observed the mean number of total ovulated oocytes and the number of morphologically normal oocytes. After entosomatic fertilization, we observed the rate of fertilized 2-cell embryos to blastocyst stage in vitro. Also we chose the caspase-3 for cell apoptosis, MAPK and MPG genes for cell viability and DNA repair by RT-PCR. Results: 1. In case of 4, 8, 12day administration of Foeniculi Fructus with 0.1, 1, 10, $100\;mg/m{\ell}$, the mean number of total ovulated oocytes and the number of morphologically normal oocytes were increased in the comparison of control group. 2. In case of 4, 8, 12day administration of Foeniculi Fructus with 0.1, 1, 10, $100\;mg/m{\ell}$, the rates of blastocyst formation from 2-cell stages were increased in the comparison of control group. 3. In case of 4, 8, 12day administration of Foeniculi Fructus with 0.1, 1, 10, $100\;mg/m{\ell}$, the gene expression of caspase-3, MAPK, MPG didn't show significant result in the comparison of control group. Conclusion: This study shows that Foeniculi Fructus has significant effects on the increase of the function on ovulation and embryonic development of female mice. But this results have nothing to do with caspase-3, MAPK and MPG genes. So we need a further study for which genes are related to the activation of reproductive functions of Foeniculi Fructus.

Enzymeimmunoassay for the Plasma Vitellogenin and Early Determination of Ovarian Maturation in Red Seabream, Pagrus major (참돔(Pagrus major)의 혈장 난황단백전구체에 대한 효소면역측정법과 난소성숙의 조기판정)

  • Han Chang-Haa;Yang Mun-Ho;Paek Jae-Min;Lim Sang-Koo;Kim Kwang-Hyun
    • Journal of Aquaculture
    • /
    • v.8 no.1
    • /
    • pp.1-19
    • /
    • 1995
  • In red seabream, Pagrus major the female specific protein in the vitellogenic female serum was identified by Ouchterlony's immunodiffusion test and immunoelectrophoresis. The female specific serum protein might be vitellogenin based on the results of the immunological analysis for the male and vitellogenic female sera and crude egg extracts. Also, it was identified by the immunodiffusion test that the purified yolk protein from ovarian egg extracts has antigenic identities shared with the female specific serum protein. To study the relationship between the maturational stages of gonad and plasma levels of vitellogenin, these were measured from the late resting period (January) to the vitellogenic preiod (April) by the modified enzymeimmunoassay (EIA) using antiserum against yolk protein. The level of plasma vitellogenin began to increase in February (previtellogenesis stage) and continuously increased with the ovarian growth during the vitellogenesis period (March to April). The plasma vitellogenin levels were significantly different between the females and the males in February. Validation for the modified EIA system. was tested .The absorbance curve of serial dilutions of serum from the vitellogenic female was paralleled to the standard curve of yolk protein; $109\pm5.6\%$ recovery was achieved by the modified EIA. And the intraassay coefficients of variation were less than 10% within the concentration ranging from 31.3 ng/ml to 1,000 ng/ml. These findings suggest that the sex determination in adult red seabreams could be possible by using the modified EIA as early as in February.

  • PDF

Effects of clomiphene citrate on ovarian function and embryo developmental capacity in the rat (랫드에 있어서 클로미펜 시트레이트가 난소기능 및 수정란 발육성에 미치는 영향)

  • Yun, Young-won;Kwun, Jong-kuk
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.1
    • /
    • pp.15-24
    • /
    • 1992
  • The effects of CC the ovulatory response, oocyte normality, ovarian steroidogenesis and subsequent embryo developmental potential were examined in PMSG-treated rats. On Days of 25~27 of age, immature female Sprague Dawley rats were treated with three different doses(0.05, 0.1 or 1.0mg /day) of clomiphene citrate or vehicle. The females subsequently received 4IU PMSG on Day 28 and/or 10IU hCG on Day 30, and were killed on Day 31. Some females given 0.1mg CC or vehicle with 4IU PMSG were then mated and killed on Days 2, 3, 4 and 5 of pregnancy. Compared to vehicle(control) group, by increasing the doses of CC, there were a significant decrease in the ovulatory response as judged by both the proportion of rats ovulating and the mean number of oocytes per rat and a marked reduction of ovarian weight. The increasing doses of CC substantially promoted the degeneration(%) of oocytes ovulating in a dose-dependent manner. The CC-mediated inhibitions of the ovulatory response and ovarian weight were oompletely overcome by a subsequent treatment of hCG. Increasing doses of CC resulted in a siginificant elevation of serum estradiol with the decreased levels of progesterone and androgens. The additive treatment with hCG was effective to reduce the elevation of estradiol and to increase the reduction of progesterone produced by high dose(1.0mg) of CC. The preimplantation embryos recovered from 0.1mg CC-treated pregnant rats demonstrated a progressive early loss from Day 3 of pregnancy with a significant increase in the percentage of degeneration during all periods examined, compared to controls. The rate of progressive embryo cleavage in the CC-treated rats were slower than that in controls from Day 3 of pregnancy. Additionally, the percentage of the cleaved embryos recovered from the CC-treated rats remained significantly lower consistently from Day 2 of pregnancy, compared to control regimen. These results demonstrate a possible mechanism of CC-mediated inhibition of ovulatory response in the rats which may include the attenuation or blockade of the endogenous secretion of gonadotropins and also suggest that its detrimental effects observed on oocyte normality and embryonic development may be caused by abnormal follicular steroidogenesis( especially elevated estradiol) preceding fertilization.

  • PDF

Reactive Oxygen Species Mediates Lysophosphatidic Acid-induced Migration of SKOV-3 Ovarian Cancer Cells (SKOV-3 난소암 세포주에서 lysophosphatidic acid 유도 세포의 이동에 있어 활성산소의 역할)

  • Kim, Eun Kyoung;Lee, Hye Sun;Ha, Hong Koo;Yun, Sung Ji;Ha, Jung Min;Kim, Young Whan;Jin, In Hye;Shin, Hwa Kyoung;Bae, Sun Sik
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1621-1627
    • /
    • 2012
  • Cell motility plays an essential role in many physiological responses, such as development, immune reaction, and angiogenesis. In the present study, we showed that lysophosphatidic acid (LPA) modulates cancer cell migration by regulation of generation of reactive oxygen species (ROS). Stimulation of SKOV-3 ovarian cancer cells with LPA strongly promoted migration. but this migration was completely blocked by pharmacological inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Inhibition of the ERK pathway had no effect on migration. Stimulation of SKOV-3 ovarian cancer cells with LPA significantly induced the generation of ROS in a time-dependent manner. LPA-induced generation of ROS was significantly blocked by pharmacological inhibition of PI3K or Akt, but inhibition of the ERK signaling pathway had little effect. LPA-induced generation of ROS was blocked by pretreatment of SKOV-3 ovarian cancer cells with an NADPH oxidase inhibitor, whereas inhibition of xanthine oxidase, cyclooxygenase, or mitochondrial respiratory chain complex I had no effect. Scavenging of ROS by N-acetylcysteine completely blocked LPA-induced migration of SKOV-3 ovarian cancer cells. Inhibition of NADPH oxidase blocked LPA-induced migration whereas inhibition of xanthine oxidase, cyclooxygenase, or mitochondrial respiratory chain complex I did not affect LPA-induced migration of SKOV-3 ovarian cancer cells. Given these results, we suggest that LPA induces ROS generation through the PI3K/Akt/NADPH oxidase signaling axis, thereby regulating cancer cell migration.

Disruption of Sex Differentiation by Exogenous Sex Steroid Hormones in Korean Rockfish, Sebastes schlegeli (외인성 성스테로이드 호르몬에 의한 조피볼락, Sebastes schlegeli의 성분화 교란)

  • Kwon, Joon-Yeong;Lee, Chan-Hee;Kim, Ju-Yeong;Kim, Sang-Hun;Kim, Dae-Jung;Han, Hyoung-Kyun;Lim, Han-Kyu;Byun, Sun-Gyu
    • Development and Reproduction
    • /
    • v.10 no.4
    • /
    • pp.247-254
    • /
    • 2006
  • It is well publicized that the existence of various endocrine disrupting chemicals threatens normal sexual development of many sedentary marine fishes in the coastal areas. However, a suitable marine fish species for efficient monitoring of this threatening has yet to be identified. One of the difficulties in estimating the effect of endocrine disruption in marine fish is the absence of clear distinction between testicular and ovarian structures at the early stages of sex differentiation. In search of a potential test species, we have investigated the microscopic structures of sexually undifferentiated and differentiated gonads and the susceptibility of gonadal differentiation to exogenous sex steroids during the sex differentiation period in a sedentary marine rockfish, Sebastes schlegeli. Male gonads in this species contained dark pigmentation that made them distinct from female gonads. Treatment either with $estradiol-17\;{\beta}(E_2)$ or $17\;{\alpha}-methyltestosterone$ (MT) significantly altered the sex ratios with the complete sex changes or the occurrence of ovotestis that was easily identified by the mixed structure of dimorphic gonads (coexistence of ovarian cavity/primary oocytes and dark pigmentation/seminiferous tubules). Results in this study suggest that S. schlegeli can be developed as a monitoring/test fish species for endocrine disruption in marine fish in the coastal areas.

  • PDF

Mycoplasma genitalium and Cancer: A Brief Review

  • Zarei, Omid;Rezania, Simin;Mousavi, Atefeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3425-3428
    • /
    • 2013
  • Approximately, 15-20% of all cancers worldwide are caused by infectious agents. Understanding the role of infectious agents on cancer development might be useful for developing new approaches to its prevention. Mycoplasma genitalium is a clinically important sexually transmitted pathogen that has been associated with several human diseases. There have been a few studies suggestive of probable roles of Mycoplasma genitalium in cancer development, including prostate and ovarian cancers and lymphomas, but the role of this microorganism like other Mycoplasma species in neoplasia is still conjectural. Considering the prevalence of Mycoplasma genitalium infections and also the emergence of resistant strains, Mycoplasma genitalium needs more attention in the infectious agent cancer-causing research area.

Potential roles of reactive oxygen species derived from chemical substances involved in cancer development in the female reproductive system

  • Kim, Soo-Min;Hwang, Kyung-A;Choi, Kyung-Chul
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.557-562
    • /
    • 2018
  • Reactive oxygen species (ROS) are major sources of cellular oxidative stress. Specifically, cancer cells harbor genetic alterations that promote a continuous and elevated production of ROS. While such oxidative stress conditions could be harmful to normal cells, they facilitate cancer cell growth in multiple ways by causing DNA damage and genomic instability, and ultimately by reprogramming cancer cell metabolism. This review provides up to date findings regarding the roles of ROS generation induced by diverse biological molecules and chemicals in representative women's cancer. Specifically, we describe the cellular signaling pathways that regulate direct or indirect interactions between ROS homeostasis and metabolism within female genital cancer cells.

Ultrastructural Studies on Oocyte Development and Vitellogenesis During Oogenesis in Female Boleophthalmus pectinirostris

  • Chung, Ee-Yung;Choi, Ki-Ho;Jun, Je-Cheon;Choi, Moon-Sul;Lee, Ki-Young
    • Animal cells and systems
    • /
    • v.13 no.1
    • /
    • pp.49-57
    • /
    • 2009
  • For the study of the reproductive mechanism associated with the process of vitellogenesis, oocyte development and vitellogenesis during oogenesis in female Boleophthalmus pectinirostris were investigated by electron microscopic observations. The ovary consists of a pair of saccular structures with many ovarian lobules. In the early vitellogenic oocyte, the Golgi complex plays an important role leading to the formation of yolk vesicles containing carbohydrate yolks. At this time many pinocytotic vesicles containing yolk precursors are observed in the cytoplasm near the region of initial formation of the zona radiata. In the late vitellogenic oocytes, the multivesicular bodies, which are formed by modified mitochondria, are involved in the formation of the primary yolk granules. Precursors of yolk granules and multivesicular bodies develop to primary yolk globules with participation of pinocytotic vesicles. After primary yolk globules mix with each other, they develop into secondary and tertiary yolk globules. Based on these findings, vitellogenesis of B. pectinirostris occurs by way of the processes of endogenous autosynthesis and exogenous heterosynthesis. The process of autosynthesis involves the combined activity of the Golgi complex, mitochondria, and multivesicular bodies. However, the process of heterosynthesis involves pinocytotic incorporation of extraovarian precursors into the zona radiata of vitellogenic oocytes by way of the thecal cell layers and granulosa cells.