• Title/Summary/Keyword: output-only modal identification

Search Result 58, Processing Time 0.03 seconds

Theoretical research on the identification method of bridge dynamic parameters using free decay response

  • Tan, Guo-Jin;Cheng, Yong-Chun;Liu, Han-Bing;Wang, Long-Lin
    • Structural Engineering and Mechanics
    • /
    • v.38 no.3
    • /
    • pp.349-359
    • /
    • 2011
  • Input excitation and output response of structure are needed in conventional modal analysis methods. However, input excitation is often difficult to be obtained in the dynamic load test of bridge structures. Therefore, what attracts engineers' attention is how to get dynamic parameters from the output response. In this paper, a structural experimental modal analysis method is introduced, which can be used to conveniently obtain dynamic parameters of the structure from the free decay response. With known damping coefficients, this analysis method can be used to identify the natural frequencies and the mode shapes of MDOF structures. Based on the modal analysis theory, the mathematical relationship of damping ratio and frequency is obtained. By using this mathematical relationship to improve the previous method, an improved experimental modal analysis method is proposed in this paper. This improved method can overcome the deficiencies of the previous method, which can not identify damping ratios and requires damping coefficients in advance. Additionally, this improved method can also identify the natural frequencies, mode shapes and damping ratios of the bridge only from the free decay response, and ensure the stability of identification process by using modern mathematical means. Finally, the feasibility and effectiveness of this method are demonstrated by a numerical example of a simply supported reinforced concrete beam.

Structural health monitoring of Canton Tower using Bayesian framework

  • Kuok, Sin-Chi;Yuen, Ka-Veng
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.375-391
    • /
    • 2012
  • This paper reports the structural health monitoring benchmark study results for the Canton Tower using Bayesian methods. In this study, output-only modal identification and finite element model updating are considered using a given set of structural acceleration measurements and the corresponding ambient conditions of 24 hours. In the first stage, the Bayesian spectral density approach is used for output-only modal identification with the acceleration time histories as the excitation to the tower is unknown. The modal parameters and the associated uncertainty can be estimated through Bayesian inference. Uncertainty quantification is important for determination of statistically significant change of the modal parameters and for weighting assignment in the subsequent stage of model updating. In the second stage, a Bayesian model updating approach is utilized to update the finite element model of the tower. The uncertain stiffness parameters can be obtained by minimizing an objective function that is a weighted sum of the square of the differences (residuals) between the identified modal parameters and the corresponding values of the model. The weightings distinguish the contribution of different residuals with different uncertain levels. They are obtained using the Bayesian spectral density approach in the first stage. Again, uncertainty of the stiffness parameters can be quantified with Bayesian inference. Finally, this Bayesian framework is applied to the 24-hour field measurements to investigate the variation of the modal and stiffness parameters under changing ambient conditions. Results show that the Bayesian framework successfully achieves the goal of the first task of this benchmark study.

Output only system identification using complex wavelet modified second order blind identification method - A time-frequency domain approach

  • Huang, Chaojun;Nagarajaiah, Satish
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.369-378
    • /
    • 2021
  • This paper reviewed a few output-only system identification algorithms and identified the shortcomings of those popular blind source separation methods. To address the issues such as less sensors than the targeted modal modes (under-determinate problem), repeated natural frequencies as well as systems with complex mode shapes, this paper proposed a complex wavelet modified second order blind identification method (CWMSOBI) by transforming the time domain problem into time-frequency domain. The wavelet coefficients with different dominant frequencies can be used to address the under-determinate problem, while complex mode shapes are addressed by introducing the complex wavelet transformation. Numerical simulations with both high and low signal-to-noise ratios validate that CWMSOBI can overcome the above-mentioned issues while obtaining more accurate identified results than other blind identification methods.

A comparative study on the subspace based system identification techniques applied on civil engineering structures

  • Bakir, Pelin Gundes;Alkan, Serhat;Eksioglu, Ender Mete
    • Smart Structures and Systems
    • /
    • v.7 no.2
    • /
    • pp.153-167
    • /
    • 2011
  • The Subspace based System Identification Techniques (SSIT) have been very popular within the research circles in the last decade due to their proven superiority over the other existing system identification techniques. For operational (output only) modal analysis, the stochastic SSIT and for operational modal analysis in the presence of exogenous inputs, the combined deterministic stochastic SSIT have been used in the literature. This study compares the application of the two alternative techniques on a typical school building in Istanbul using 100 Monte Carlo simulations. The study clearly shows that the combined deterministic stochastic SSIT performs superior to the stochastic SSIT when the techniques are applied on noisy data from low to mid rise stiff structures.

Effective Heterogeneous Data Fusion procedure via Kalman filtering

  • Ravizza, Gabriele;Ferrari, Rosalba;Rizzi, Egidio;Chatzi, Eleni N.
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.631-641
    • /
    • 2018
  • This paper outlines a computational procedure for the effective merging of diverse sensor measurements, displacement and acceleration signals in particular, in order to successfully monitor and simulate the current health condition of civil structures under dynamic loadings. In particular, it investigates a Kalman Filter implementation for the Heterogeneous Data Fusion of displacement and acceleration response signals of a structural system toward dynamic identification purposes. The procedure is perspectively aimed at enhancing extensive remote displacement measurements (commonly affected by high noise), by possibly integrating them with a few standard acceleration measurements (considered instead as noise-free or corrupted by slight noise only). Within the data fusion analysis, a Kalman Filter algorithm is implemented and its effectiveness in improving noise-corrupted displacement measurements is investigated. The performance of the filter is assessed based on the RMS error between the original (noise-free, numerically-determined) displacement signal and the Kalman Filter displacement estimate, and on the structural modal parameters (natural frequencies) that can be extracted from displacement signals, refined through the combined use of displacement and acceleration recordings, through inverse analysis algorithms for output-only modal dynamics identification, based on displacements.

Ambient modal identification of structures equipped with tuned mass dampers using parallel factor blind source separation

  • Sadhu, A.;Hazraa, B.;Narasimhan, S.
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.257-280
    • /
    • 2014
  • In this paper, a novel PARAllel FACtor (PARAFAC) decomposition based Blind Source Separation (BSS) algorithm is proposed for modal identification of structures equipped with tuned mass dampers. Tuned mass dampers (TMDs) are extremely effective vibration absorbers in tall flexible structures, but prone to get de-tuned due to accidental changes in structural properties, alteration in operating conditions, and incorrect design forecasts. Presence of closely spaced modes in structures coupled with TMDs renders output-only modal identification difficult. Over the last decade, second-order BSS algorithms have shown significant promise in the area of ambient modal identification. These methods employ joint diagonalization of covariance matrices of measurements to estimate the mixing matrix (mode shape coefficients) and sources (modal responses). Recently, PARAFAC BSS model has evolved as a powerful multi-linear algebra tool for decomposing an $n^{th}$ order tensor into a number of rank-1 tensors. This method is utilized in the context of modal identification in the present study. Covariance matrices of measurements at several lags are used to form a $3^{rd}$ order tensor and then PARAFAC decomposition is employed to obtain the desired number of components, comprising of modal responses and the mixing matrix. The strong uniqueness properties of PARAFAC models enable direct source separation with fine spectral resolution even in cases where the number of sensor observations is less compared to the number of target modes, i.e., the underdetermined case. This capability is exploited to separate closely spaced modes of the TMDs using partial measurements, and subsequently to estimate modal parameters. The proposed method is validated using extensive numerical studies comprising of multi-degree-of-freedom simulation models equipped with TMDs, as well as with an experimental set-up.

Automated identification of the modal parameters of a cable-stayed bridge: Influence of the wind conditions

  • Magalhaes, Filipe;Cunha, Alvaro
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.431-444
    • /
    • 2016
  • This paper was written in the context of a benchmark study promoted by The Hong Kong Polytechnic University using data samples collected in an instrumented cable-stayed bridge. The main goal of the benchmark test was to study the identification of the bridge modes of vibration under different wind conditions. In this contribution, the tools developed at ViBest/FEUP for automated data processing of setups collected by dynamic monitoring systems are presented and applied to the data made available in the context of the benchmark study. The applied tools are based on parametric output only modal identification methods combined with clustering algorithms. The obtained results demonstrate that the proposed algorithms succeeded to automatically identify the modes with relevant contribution for the bridge response under different wind conditions.

Application of OMA on the bench-scale earthquake simulator using micro tremor data

  • Kasimzade, Azer A.;Tuhta, Sertac
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.267-274
    • /
    • 2017
  • In this study was investigated of possibility using the recorded micro tremor data on ground level as ambient vibration input excitation data for investigation and application Operational Modal Analysis (OMA) on the bench-scale earthquake simulator (The Quanser Shake Table) for model steel structures. As known OMA methods (such as EFDD, SSI and so on) are supposed to deal with the ambient responses. For this purpose, analytical and experimental modal analysis of a model steel structure for dynamic characteristics was evaluated. 3D Finite element model of the building was evaluated for the model steel structure based on the design drawing. Ambient excitation was provided by shake table from the recorded micro tremor ambient vibration data on ground level. Enhanced Frequency Domain Decomposition is used for the output only modal identification. From this study, best correlation is found between mode shapes. Natural frequencies and analytical frequencies in average (only) 2.8% are differences.

OMA of model chimney using Bench-Scale earthquake simulator

  • Tuhta, Sertac
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.321-327
    • /
    • 2019
  • This study investigated the possibility of using the recorded micro tremor data on ground level as ambient vibration input excitation data for investigation and application Operational Modal Analysis (OMA) on the bench-scale earthquake simulator (The Quanser Shake Table) for model chimney. As known OMA methods (such as EFDD, SSI and so on) are supposed to deal with the ambient responses. For this purpose, analytical and experimental modal analysis of a model chimney for dynamic characteristics was performed. 3D Finite element model of the chimney was evaluated based on the design drawing. Ambient excitation was provided by shake table from the recorded micro tremor ambient vibration data on ground level. Enhanced Frequency Domain Decomposition is used for the output only modal identification. From this study, best correlation is found between mode shapes. Natural frequencies and analytical frequencies in average (only) 1.996% are different.

Modal testing and finite element model calibration of an arch type steel footbridge

  • Bayraktar, Alemdar;Altunisk, Ahmet Can;Sevim, Baris;Turker, Temel
    • Steel and Composite Structures
    • /
    • v.7 no.6
    • /
    • pp.487-502
    • /
    • 2007
  • In recent decades there has been a trend towards improved mechanical characteristics of materials used in footbridge construction. It has enabled engineers to design lighter, slender and more aesthetic structures. As a result of these construction trends, many footbridges have become more susceptible to vibrations when subjected to dynamic loads. In addition to this, some inherit modelling uncertainties related to a lack of information on the as-built structure, such as boundary conditions, material properties, and the effects of non-structural elements make difficult to evaluate modal properties of footbridges, analytically. For these purposes, modal testing of footbridges is used to rectify these problems after construction. This paper describes an arch type steel footbridge, its analytical modelling, modal testing and finite element model calibration. A modern steel footbridge which has arch type structural system and located on the Karadeniz coast road in Trabzon, Turkey is selected as an application. An analytical modal analysis is performed on the developed 3D finite element model of footbridge to provide the analytical frequencies and mode shapes. The field ambient vibration tests on the footbridge deck under natural excitation such as human walking and traffic loads are conducted. The output-only modal parameter identification is carried out by using the peak picking of the average normalized power spectral densities in the frequency domain and stochastic subspace identification in the time domain, and dynamic characteristics such as natural frequencies mode shapes and damping ratios are determined. The finite element model of footbridge is calibrated to minimize the differences between analytically and experimentally estimated modal properties by changing some uncertain modelling parameters such as material properties. At the end of the study, maximum differences in the natural frequencies are reduced from 22% to only %5 and good agreement is found between analytical and experimental dynamic characteristics such as natural frequencies, mode shapes by model calibration.