• Title/Summary/Keyword: output driver

Search Result 368, Processing Time 0.027 seconds

Design and Implementation of a Fast DIO(Digital I/O) System (고속 DIO(Digital I/O) 시스템의 설계와 제작)

  • Lee, Jong-Woon;Cho, Gyu-Sang
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.5
    • /
    • pp.229-235
    • /
    • 2006
  • High speed PC-based DIO(Digital I/O) system that consists of a master device and slave I/O devices is developed. The PCI interfaced master device controls all of serial communications, reducing the load on the CPU to a minimum. The slave device is connected from the master device and another slave device is connected to the slave device, it can repeated to maximum 64 slave devices. The slave device has 3 types I/O mode, such as 16 bits input-only, 16 bits output-only, and 8bits input-output. The master device has 2 rings which can take 64 slaves each. Therefore, total I/O points covered by the master is 2048 points. The slave features 3 types of input/output function interchangeability by DIP switch settings. Library, application, and device driver software for the DIO system that have a secure and a convenient functionality are developed.

Design and Implementation of High-Efficiency, Low-Power Switched-Capacitor DC-DC Converter (고효율, 저전력 Switched-Capacitor DC-DC 변환기의 설계 및 구현)

  • Kim, Nam-Kyun;Kim, Sang-Cheol;Bahng, Wook;Song, Geun-Ho;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.523-526
    • /
    • 2001
  • In this paper, we design and fabricate the high-efficiency and low-power switched-capacitor DC-DC converter. This converter consists of internal oscillator, output driver and output switches. The internal oscillator has 100kHz oscillation frequency and the output switches composed of one pMOS transistor and three nMOS transistors. According to the configuration of two external capacitors, the converter has three functions that are the Inverter, Doubler and Divider. The proposed converter is fabricated through the 0.8$\mu\textrm{m}$ 2-poly, 2-metal CMOS process. The simulation and experimental result for fabricated IC show that the proposed converter has the voltage conversion efficiency of 98% and power efficiency more than 95%.

  • PDF

Design and Analysis of a Triple Output DC/DC Converter with One Switch for Photovoltaic Multilevel Single Phase Inverter (태양광 멀티레벨 단상 인버터를 위한 단일 스위치를 가지는 삼중 출력 DC/DC 컨버터 설계 및 해석)

  • Choi, Woo-Seok;Park, Sung-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.82-89
    • /
    • 2014
  • The industrial products to use single phase inverter are raised the necessity of power quality improvement, such as AC Motor Driver, Lighting, Renewable energy power converter. Also, it is increasing that applied the single phase multilevel inverter for high quality power at renewable energy power converter. Especially, the photovoltaic multilevel inverters have at least more than two DC_Link and more than one DC/DC Converter. This paper proposes a triple output DC/DC Converter with one switch for photovoltaic multilevel inverter. The proposed converter has advantages of low cost and volume because it has one switch. The operation principle of the converter is analyzed and verified. A prototype is implemented to verify of the proposed converter.

Frequency Response Compensation Technique for Capacitive Microresonator (용량형 마이크로 공진기의 주파수 응답 보상 기법)

  • Seo, Jin-Deok;Lim, Kyo-Muk;Ko, Hyoung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.235-239
    • /
    • 2012
  • This paper presents frequency response compensation technique, and a self-oscillation circuit for capacitive microresonator with the compensation technique using programmable capacitor array, to compensate for the frequency response distorted by parasitic capacitances, and to obtain stable oscillation condition. The parasitic capacitances between the actuation input port and capacitive output port distort the frequency response of the microresonator. The distorted non-ideal frequency response can be compensated using two programmable capacitor arrays, which are connected between anti-phased actuation input port and capacitive output port. The simulation model includes the whole microresonator system, which consists of mechanical structure, transimpedance amplifier with automatic gain control, actuation driver and compensation circuit. The compensation operation and oscillation output of the system is verified with the simulation results.

Thickness-Vibration-Mode Piezoelectric Transformer for Power Converter

  • Su-Ho lee;Yoo, Ju-Hyun;Yoon, H.S.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.3
    • /
    • pp.1-5
    • /
    • 2000
  • This paper presents a new sort of multilayer piezoelectric ceramic transformer for switching regulation power supplies. This piezoelectric transformer operate in the second thickness resonant vibration mode. Accordingly its resonant frequency is higher than 1 NHz, Because output power is low if input and output part of transformer are consisted of single layer, this research suggests a new method, which is consisted of both input and output part of transformer have 2-layered piezoelectric ceramics, The size of transformer is 20 mm in width and length, and 1.4 mm in thickness, respectively, To design a high efficient switching circuit of the transformer, internal circuit parameters were measured and then weve calculated a parameter of inductor nd capacitor to design a driving circuit, Weve used a MISFET and its driver circuit modified a calp oscillator circuit as the primary switching circuit.

  • PDF

Time-Delay Effects on DC Characteristics of Peak Current Controlled Power LED Drivers

  • Jung, Young-Seok;Kim, Marn-Go
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.715-722
    • /
    • 2012
  • New discrete time domain models for the peak current controlled (PCC) power LED drivers in continuous conduction mode include for the first time the effects of the time delay in the pulse-width-modulator. Realistic amounts of time delay are found to have significant effects on the average output LED current and on the critical inductor value at the boundary between the two conduction modes. Especially, the time delay can provide an accurate LED current for the PCC buck converter with a wide input voltage. The models can also predict the critical inductor value at the mode boundary as functions of the input voltage and the time delay. The overshoot of the peak inductor current due to the time delay results in the increase of the average output current and the reduction of the critical inductor value at the mode boundary in all converters. Experimental results are presented for the PCC buck LED driver with constant-frequency controller.

Implementation of a LED light control module using Zigbee (Zigbee를 이용한 LED 조명 제어 모듈 구성)

  • Jang, Young-Ho;Kim, Hwan-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4740-4744
    • /
    • 2012
  • The purpose of this paper was to make a LED light control module using Zigbee. The module was made so that brightness of the LED light changes according to the ambient brightness. A 8-bit microcontroller was used to implement the module to enable LED dimming and wireless light intensity measurement. Using the proposed method, power consumption can be improved by up to 48% on average, with 3.4-0.4W changes in power. The measured ambient light intensity values are converted from analog to digital and outputted as a PWM waveform. According to the output waveform and changes in the current outputted from the LED driver, the brightness of the LED light is controlled. Also, Zigbee with close-range wireless communication capabilities was used to enable wireless transmission of light intensity measurements.

Implementation of Feedback Controller on the Servo System (교류서보계의 궤환제어 구현)

  • Chun, Sam-Suk;Park, Chan-Won
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.719-720
    • /
    • 2006
  • In the mechanical system, optimization of motion control is very essential in the aspect of automation technique progress. In the servo system, the function of controller is very important but most of the controllers have played only the role of pulse generator because the controller with main function is very expensive. In this thesis, the system was composed of PC, commonly used driver AC servo motor and a produced control board. The PC transmit a gain, a locus data to a driver and controller. At the same time, it converts imformation from the controller and convert them into data and offer an output with graph. The role of a controller is to trasmit a locus data to a driver and counting the pulse on the phase of an encoder to the PC. We have performed the experiment in order to confirm with variable PID parameter capable of the optimization of gain tuning with the counting of feedback control sensor signal with regard to the external interface into the system, such as torque. Based on the experiment result, we have confirmed as follows: First, it was confirmed that we could easily input control factors P.I Gain, constant $K_P,\;K_I$ into PC. Second, not only pulse generator function was possible, but with this pulse it was also possible to count using software with PIC chip. And third, using the multi-purpose PIC micro chip, simple operation and the formation of small size AC Servo Controller was possible.

  • PDF

Study on the LED BLU Driving Circuit with a Local-dimming Structure (다분할 디밍구조를 갖는 LED BLU 구동회로에 관한 연구)

  • Park, Yu-Cheol;Kim, Hee-Jun;Chae, Gyun;Baek, Ju-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.292-300
    • /
    • 2009
  • This paper presents an LED BLU driving circuit with a local-dimming structure. The efficiency of the proposed LED driver has been improved by parallel driving 8 serial-connected LED arrays. It employed the soft-switching boost converter topology to reduce the switching power loss of the hard switching boost converter. Soft- and hard-switching converters have the same structure except that the free-wheeling diode in the hard-switching converter is replaced with the n-channel MOSFET in the soft-switching one. The proposed boost converter was compared with the hard switching converter. The soft-switching converter reveals superior ripple and efficiency. A smaller inductance can be used for the soft-switching converter contrasting to the hard-switching one. We also studied on an over-voltage protection circuit of the output of the driver at the no load condition. The protection circuit was applied to the proposed driver, and its operation was confirmed by experiment. Using a local-dimming technique, power consumption of LCD BLUs can be reduced as low as possible according to the brightness of its image.

Direct AC LED Driver for Wide Power Range and Precise Constant Current Regulation

  • Hwang, Minha;Eum, Hyunchul;Yang, Seunguk;Park, Gyumin;Park, Inki
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.522-524
    • /
    • 2018
  • A New Direct AC LED Driver has been proposed for wide output power range and precise constant current regulation using an advanced auto commutation topology. The conventional shunt regulation method provides a stepped input current shape by fixed regulation references in the linear regulator of the each channel, which results in poor current regulation and high THD. The conventional method needs to assign a linear regulator in each LED channel so that the number of linear regulator increases when extending the number of channels especially at high power application. The proposed regulation method can drive multiple switches to regulate each LED channel current by a single amplifier with sinusoidal reference so that large number of LED channel can be simply extended with less BOM cost and low THD is obtained with the accurate current regulation thanks to the sinusoidal input current control in the closed loop control. To confirm the validity of the proposed circuit, theoretical analysis and experimental results from a 20-W LED driver prototype are presented.

  • PDF