• Title/Summary/Keyword: output coupled

Search Result 457, Processing Time 0.023 seconds

Nonisolated Multichannel LED Current Balancing Scheme Using Coupled Inductor and Series Resonant Converter (결합인덕터와 직렬 공진을 이용한 비절연 다중 LED 전류 평형 기법)

  • Shin, Yooyong;Hong, Daheon;Choi, Byungcho;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.249-255
    • /
    • 2021
  • A novel current balancing technique for multichannel light-emitting diode (LED) that uses a series resonance and coupled inductor is proposed in this paper. The proposed LED driver balances output currents through frequency control and enables zero-voltage switching. The proposed converter utilizes the charge balance condition of the resonant capacitor and the current sharing function of the coupled inductor to achieve whole LED current balancing without an additional controller. The proposed coupled inductor can integrate the current balancing function and the resonant inductor, so the power density can be increased by reducing the number of magnetic devices. A 40 W prototype is built to verify the validity of this LED driver, and the experimental results are successfully obtained.

Design and Implementation of the Mutually Coupled Structure Oscillators for Improved Phase-Noise Characteristics (위상 잡음 특성 개선을 위한 상호 결합 구조의 발진기 설계 및 제작)

  • Choi, Jeong-Wan;Do, Ji-Hoon;Lee, Hyung-Kyu;Kang, Dong-Jin;Yoon, Ho-Seok;Lee, Kyung-Hak;Hong, Ui-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.11 s.114
    • /
    • pp.1112-1119
    • /
    • 2006
  • In this paper, mutually coupled oscillator is employed to improve phase noise. Mutually coupled structure oscillator couples two oscillator's phase shifted output signals, that is fabricated using teflon board which has dielectric constant of 2.5 and Surface Mount Gallium Arsenide FET devices. And this paper proposed the structure to bias adjustment for the phase condition of mutually couples. When one oscillator has bias point of 4.4 V and 37 mA, it's output signal has phase noise characteristic of -96.37 dBc(@9305 MHz, offset frequency 100 KHz), -73.46 dBc(10 kHz). and After it's output signal mutually coupled the other's output signal that has bias point of 8.1 V and 69 mA, it has superior phase noise characteristic of -106.7 dBc(@9305 MHz, offset frequency 100 kHz), -81 dBc(10 kHz).

Linear Quadratic Regulation and Tracking using Output Feedback with Direct Feedthrough

  • Kang, Seungeun;Cha, Jihyoung;Ko, Sangho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.593-603
    • /
    • 2016
  • This paper presents the development of linear quadratic regulation and output tracking algorithms using output feedback when both the measurement and performance output equations contain direct feedthrough terms. Although all physical systems can be modeled without direct feedthrough, there are still many situations where system models with direct feedthrough are important. For this situation, we modify previous work on the same topic for systems without direct feedthrough. It is shown that for the regulation problem, the optimal output feedback gain for a direct feedthrough case can be directly obtained, via a transformation, from the approach used for systems without direct feedthrough. However, for the tracking problem, a new set of coupled matrix equations for determining the optimal output feedback gain is derived from the necessary conditions for minimizing the cost function. The effectiveness of the developed algorithms is demonstrated using numerical examples.

A New Design Method of Tapped Coupled-Line Filters (탭 선로를 이용한 새로운 결합선로 여파기 설계법)

  • 우동식;김강욱
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.11
    • /
    • pp.1100-1107
    • /
    • 2004
  • In this paper, a new design method fur tapped coupled-line filters has been developed. The design equations for this tapped-line filter have been obtained using a new equivalent circuit model of tapped lines. These tapped-lines replace input/output coupled lines of the conventional edge coupled-line filters, which tend to have very narrow line gaps(few mils). Therefore, tapped coupled-line filters tend to be less sensitive to filter fabrication tolerances and to be easily fabricated using milling tools. The new filter design algorithm allows very accurate filter design for frequencies up to 20 GHz and bandwidth less than 20 %.

A Band Pass Filter with Feeding Structure Using π-Type Transmission Line (π-형 전송선 급전 구조를 갖는 대역 통과 필터)

  • Bae, Ju-Seok;Lim, Jong-Sik;Kim, Kwi-Soo;Ahn, Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.114-120
    • /
    • 2008
  • This paper proposed the band pass filter(BPF) with feeding structure using $\pi$-type transmission line by means of transforming the input/output coupled-lines of the half wavelength parallel coupled-line BPF into K-inverter, then substituting $\pi$-type transmission line equivalence for K-inverter. The proposed method supplies solution with what the half wavelength parallel coupled-line BPF's input/output coupled-lines are realized. Also it can quite reduce efforts and time needed to optimize filter performance when is compared to reported method using tapped line structure because formulas is very simple and accurate. On the basic of the proposed method, the BPF with feeding structure using $\pi$-type transmission line has been designed and fabricated. The validity of proposed method was proven by the measured result.

A 13.56 MHz CMOS Multi-Stage Rectifier for Wireless Power Transfer in Biomedical Applications (바이오응용 무선전력전달을 위한 13.56 MHz CMOS 다단 정류기)

  • Cha, Hyouk-Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.35-41
    • /
    • 2013
  • An efficient multi-stage rectifier for wireless power transfer in deep implant medical devices is implemented using $0.18-{\mu}m$ CMOS technology. The presented three-stage rectifier employs a cross-coupled topology to boost a small input AC signal from the external device to produce a 1.2-1.5 V output DC signal for the implant device. The designed rectifier achieves a maximum measured power conversion efficiency of 70% at 13.56 MHz under the conditions of a low 0.6-Vpp RF input signal with a $10-k{\Omega}$ output load resistance.

Analysis and Design of a Single-Phase Tapped-Coupled-Inductor Boost DC-DC Converter

  • Gitau, Michael Njoroge;Mwaniki, Fredrick Mukundi;Hofsajer, Ivan W.
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.636-646
    • /
    • 2013
  • A single-phase tapped-inductor boost converter has been proposed previously. However, detailed characterization and performance analysis were not conducted. This paper presents a detailed characterization, performance analysis, and design expressions of a single-phase tapped-coupled-inductor boost converter. Expressions are derived for average and RMS input current as well as for RMS input and output capacitor current ripple. A systematic approach for sizing the tapped-coupled inductor, active switch, and output diode is presented; such approach has not been reported in related literature. This study reveals that sizing of the inductor has to be based on current ripple requirement, turns ratio, and load. Conditions that produce discontinuous inductor current are also discussed. Analysis of a non-ideal converter operating in continuous conduction mode is also conducted. The expression for the voltage ratio considering the coupling coefficient is derived. The suitability of the converter for high-voltage step-up applications is evaluated. Factors that affect the voltage boost ratio are also identified. The effects of duty ratio and load variation on the performance of the converter are also investigated. The theoretically derived characteristics are validated through simulations. Experimental results obtained at a low power level are included to validate the analytical and simulation results. A good agreement is observed among the analytical, simulation, and experimental results.

Three-coil Magnetically Coupled Resonant Wireless Power Transfer System with Adjustable-position Intermediate Coil for Stable Transmission Characteristics

  • Chen, Xuling;Chen, Lu;Ye, Weiwei;Zhang, Weipeng
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.211-219
    • /
    • 2019
  • In magnetically coupled resonant (MCR) wireless power transfer (WPT) systems, the introduction of additional intermediate coils is an effective means of improving transmission characteristics, including output power and transmission efficiency, when the transmission distance is increased. However, the position of intermediate coils in practice influences system performance significantly. In this research, a three-coil MCR WPT system is adopted as an exemplification for determining how the spatial position of coils affects transmission characteristics. With use of the fundamental harmonic analysis method, an equivalent circuit model of the system is built to reveal the relationship between the output power, the transmission efficiency, and the spatial scales, including the axial, lateral, and angular misalignments of the intermediate and receiving coils. Three cases of transmission characteristics versus different spatial scales are evaluated. Results indicate that the system can achieve relatively stable transmission characteristics with deliberate adjustments in the position of the intermediate and receiving coils. A prototype of the three-coil MCR WPT system is built and analyzed, and the experimental results are consistent with those of the theoretical analysis.

Fast Simulation of Output Voltage for High-Shock Piezoresistive Microaccelerometer Using Mode Superposition Method and Least Square Method (모드중첩법 및 최소자승법을 통한 고충격 압저항 미소가속도계의 출력전압 해석)

  • Han, Jeong-Sam;Kwon, Ki-Beom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.777-787
    • /
    • 2012
  • The transient analysis for the output voltage of a piezoresistive microaccelerometer takes a relatively high computation time because at least two iterations are required to calculate the piezoresistive-structural coupled response at each time step. In this study, the high computational cost for calculating the transient output voltage is considerably reduced by an approach integrating the mode superposition method and the least square method. In the approach, data on static displacement and output voltage calculated by piezoresistive-structural coupled simulation for three acceleration inputs are used to develop a quadratic regression model, relating the output voltage to the displacement at a certain observation point. The transient output voltage is then approximated by a regression model using the displacement response cheaply calculated by the mode superposition method. A high-impact microaccelerometer subject to several types of acceleration inputs such as 100,000 G shock, sine, step, and square pulses are adopted as a numerical example to represent the efficiency and accuracy of the suggested approach.

An Area-Efficient DC-DC Converter with Poly-Si TFT for System-On-Glass (System-On-Glass를 위한 Poly-Si TFT 소 면적 DC-DC 변환회로)

  • Lee Kyun-Lyeol;Kim Dae-June;Yoo Changsik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.2 s.332
    • /
    • pp.1-8
    • /
    • 2005
  • An area-efficient DC-DC voltage up-converter in a poly-Si TFT technology for system-on-glass is described which provides low-ripple output. The voltage up-converter is composed of charge-pumping circuit, comparator with threshold voltage mismatch compensation, oscillator, buffer, and delay circuit for multi-phase clock generation. The low ripple output is obtained by multi-phase clocking without increasing neither clock frequency nor filtering capacitor The measurement results have shown that the ripple on the output voltage with 4-phase clocking is 123mV, while Dickson and conventional cross-coupled charge pump has 590mV and 215mV voltage ripple, respectively, for $Rout=100k\Omega$, Cout-100pF, and fclk=1MHz. The filtering capacitor required for 50mV ripple voltage is 1029pF and 575pF for Dickson and conventional cross-coupled structure, for Iout=100uA, and fclk=1MHz, while the proposed multi-phase clocking DC-DC converter with 4-phase and 6-phase clocking requires only 290pF and 157pF, respectively. The efficiency of conventional and the multi-phase clocking DC-DC converter with 4-phase clocking is $65.7\%\;and\;65.3\%$, respectively, while Dickson charge pump has $59\%$ efficiency.