• Title/Summary/Keyword: outlet edge cogging force

Search Result 6, Processing Time 0.022 seconds

A Study on the Reduction of Cogging Force of Stationary Discontinuous Armature Linear Synchronous Motor Using Auxiliary Teeth

  • Kim, Yong-Jae;Lee, Kyu-Myung;Watada, Masaya
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.281-287
    • /
    • 2011
  • The stationary discontinuous armatures that are used in permanent magnet linear synchronous motors (PM-LSMs) have been proposed as a driving source for transportation systems. However, the stationary discontinuous armature PM-LSM contains the outlet edges which always exist as a result of the discontinuous arrangement of the armature. For this reason, the high alteration of the outlet edge cogging force produced between the armature's core and the mover's permanent magnet when a mover passes the boundary between the armature's installation part and non-installation part has been indicated as a problem. Therefore, we have examined the outlet edge cogging force by installing the auxiliary teeth at the armature's outlet edge in order to minimize the outlet edge cogging force generated when the armature is arranged discontinuously. Moreover, we obtained the calculation by analyzing the shape of the auxiliary teeth in which the outlet edge cogging force is minimized the most.

Analysis of outlet edge cogging force at the Permanent Magnet Linear Synchronous Motor According to Difference of the Winding Method (권선방식 차이에 따른 영구자석 선형 동기 전동기의 단부 코깅력 해석)

  • Kim, Yong-Jae;Kim, Sung-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.889-895
    • /
    • 2011
  • PMLSM is structurally simple and it have a lot of merits such high speed, high thrust force etc., but cogging force by slot-teeth structure of armature and cogging force by outlet edge effect occurs. This is the cause of thrust force ripple and generate the noise and vibration. Therefore, in this paper we proposed installation of an auxiliary pole to mover of the PMLSM in order to decrease cogging force by the outlet edge which came necessarily into being discontinuous arrangement of the armature. Also, outlet edge cogging force designed a form of the auxiliary pole which the minimum became, and we compared a outlet edge cogging force characteristic along a winding method of an armature as we used 2-D of finite element analysis.

A Study on the reduction of cogging force of stationary discontinuous armature Permanent Magnet Linear Synchronous Motor by change in Auxiliary pole (보조극 변화에 따른 전기자 분산배치 영구자석형 리니어 동기 모터의 코깅력 저감에 관한 연구)

  • Lee, Kyu-Myung;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.6
    • /
    • pp.613-619
    • /
    • 2010
  • The stationary discontinuous armatures that are used in permanent magnet linear synchronous motors (PM-LSMs) have been proposed as a driving source for transportation systems. However, the stationary discontinuous armature PM-LSM contains the outlet edges which always exist as a result of the discontinuous arrangement of the armature. For this reason, the outlet edge cogging force generated between the armature's core and the mover's permanent magnet. This paper contemplated the outlet cogging for ceaccording to 2-D numerical analysis by FEM. We installed the auxiliary pole for in order to minimize the outlet cogging force.

A Study on Auxiliary Pole Installation of Concentrated Winding PMLSM with Bifurcating of Armature Teeth (Bifurcating을 적용한 집중권 PMLSM의 보조극 설치에 관한 연구)

  • Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.1067-1072
    • /
    • 2012
  • Recently, linear motors have been widely researched and have been increasingly used in various industrial applications. Especially, permanent magnet linear synchronous motors(PMLSMs) have been getting the spotlight in the transportation system. A PMLSM is structurally simple and has a lot of merits such as high speed, high thrust force, etc. However, in case of a long stator system which arranges armature to the full length of transportation lines, a PMLSM has some disadvantages such as the material cost increase and long manufacturing time. Hence, in order to overcome these problems, the PMLSM with stationary discontinuous armature structure and concentrated windings was proposed. However, this method occurs undesirable cogging force by outlet edge effect. The cogging force causes thrust force ripples and generates noise and vibration. Therefore, in this paper, we proposed installation method of auxiliary pole PMLSM with concentrated winding applying bifurcating in order to reduce cogging force by the outlet edge when the armature is placed in a discontinuous arrangement. Also, we have examined characteristics of outlet edge cogging force using 2-D finite element analysis(FEA).

Minimization of Cogging Force in a Stationary Discontinuous Armature Linear Permanent Magnet Motor at the Outlet Edge

  • Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.288-293
    • /
    • 2011
  • Generally, the discontinuous armature permanent magnet linear synchronous motor (PM-LSM) is composed by the stator block (accelerator, re-accelerator, and decelerator) and the free running section. However, the stationary discontinuous armature design involves the velocity variation of the mover during drive when the armature's non-installation part changes over to installation part as a result of the outlet edge of the armature. Therefore, we considered deforming the shape of the outlet edge at the armature and apply skew on the permanent magnet by displacing the two magnet segments of each pole. This paper presents the results of a three-dimensional (3-D) numerical analysis with a finite element method (FEM) of the force exerted by the outlet edge.

Analysis of the Outlet Edge Cogging Force of Permanent Magnet Linear Synchronous Motor by Deforming the Shape of Auxiliary Teeth (보조치 형상 변화에 따른 영구자석 선형 동기 전동기의 단부 코깅력 고찰)

  • Kim, Yong-Jae;Kim, Sung-Jin;Lee, Kyu-Myung;Cho, Kyoung-Pil;Cho, Geum-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.979-980
    • /
    • 2011
  • 영구자석 선형 동기 전동기(Permanent Magnet Linear Synchronous Motor)는 구조적으로 간단하며 고속화 고추력화 등의 많은 장점을 가지고 있지만 전기자 권선부의 슬롯-치 구조로 인한 코깅력과 단부효과에 의한 코깅력이 발생한다. 이는 추력 맥동의 원인이 되며, 소음과 진동을 발생시킨다. 따라서, 본 연구에서는 전기자를 분산배치할 경우 필연적으로 생기는 단부에 의한 코깅력을 저감하기 위해 기존의 전기자 끝단에 설치한 보조치를 응용하여 계단형 형상을 가진 보조치의 설치를 제안하였다.

  • PDF