In the era of personal genomics, predicting the individual response to drug-treatment is a challenge of biomedical research. The aim of this study was to validate whether interaction information between genetic and transcriptional signatures are promising features to predict a drug response. Because drug resistance/susceptibilities result from the complex associations of genetic and transcriptional activities, we predicted the inter-relationships between genetic and transcriptional signatures. With this concept, captured genetic polymorphisms and transcriptional profiles were prepared in cancer samples. By splitting ninety-nine samples into a trial set (n = 30) and a test set (n = 69), the outperformance of relationship-focused model (0.84 of area under the curve in trial set, P = $2.90{\times}10^{-4}$) was presented in the trial set and validated in the test set, respectively. The prediction results of modeling show that considering the relationships between genetic and transcriptional features is an effective approach to determine outcome predictions of drug-treatment.
Dong Ho Lee;Se Hyung Kim;Sang Min Lee;Joon Koo Han
Korean Journal of Radiology
/
v.20
no.4
/
pp.589-598
/
2019
Objective: To evaluate whether data acquired from perfusion computed tomography (PCT) parameters can aid in the prediction of treatment outcome after palliative chemotherapy in patients with unresectable advanced gastric cancer (AGC). Materials and Methods: Twenty-one patients with unresectable AGCs, who underwent both PCT and palliative chemotherapy, were prospectively included. Treatment response was assessed according to Response Evaluation Criteria in Solid Tumors version 1.1 (i.e., patients who achieved complete or partial response were classified as responders). The relationship between tumor response and PCT parameters was evaluated using the Mann-Whitney test and receiver operating characteristic analysis. One-year survival was estimated using the Kaplan-Meier method. Results: After chemotherapy, six patients exhibited partial response and were allocated to the responder group while the remaining 15 patients were allocated to the non-responder group. Permeability surface (PS) value was shown to be significantly different between the responder and non-responder groups (51.0 mL/100 g/min vs. 23.4 mL/100 g/min, respectively; p = 0.002), whereas other PCT parameters did not demonstrate a significant difference. The area under the curve for prediction in responders was 0.911 (p = 0.004) for PS value, with a sensitivity of 100% (6/6) and specificity of 80% (12/15) at a cut-off value of 29.7 mL/100 g/min. One-year survival in nine patients with PS value > 29.7 mL/100 g/min was 66.7%, which was significantly higher than that in the 12 patients (33.3%) with PS value ≤ 29.7 mL/100 g/min (p = 0.019). Conclusion: Perfusion parameter data acquired from PCT demonstrated predictive value for treatment outcome after palliative chemotherapy, reflected by the significantly higher PS value in the responder group compared with the non-responder group.
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.29
no.2
/
pp.141-158
/
2019
Objectives: An adverse outcome pathway is a biological pathway that disturbs homeostasis and causes toxicity. It is a conceptual framework for organizing existing biological knowledge and consists of the molecular initiating event, key event, and adverse output. The AOP concept provides intuitive risk identification that can be helpful in evaluating the carcinogenicity of chemicals and in the prevention of cancer through the assessment of chemical carcinogenicity predictions. Methods: We reviewed various papers and books related to the application of AOPs for the prevention of occupational cancer. We mainly used the internet to search for the necessary research data and information, such as via Google scholar(http://scholar.google.com), ScienceDirect(www.sciencedirect.com), Scopus(www.scopus. com), NDSL(http: //www.ndsl.kr/index.do) and PubMed(http://www.ncbi.nlm.nih.gov/pubmed). The key terms searched were "adverse outcome pathway," "toxicology," "risk assessment," "human exposure," "worker," "nanoparticle," "applications," and "occupational safety and health," among others. Results: Since it focused on the current state of AOP for the prediction of toxicity from chemical exposure at work and prospects for industrial health in the context of the AOP concept, respiratory and nanomaterial hazard assessments. AOP provides an intuitive understanding of the toxicity of chemicals as a conceptual means, and it works toward accurately predicting chemical toxicity. The AOP technique has emerged as a future-oriented alternative to the existing paradigm of chemical hazard and risk assessment. AOP can be applied to the assessment of chemical carcinogenicity along with efforts to understand the effects of chronic toxic chemicals in workplaces. Based on these predictive tools, it could be possible to bring about a breakthrough in the prevention of occupational and environmental cancer. Conclusions: The AOP tool has emerged as a future-oriented alternative to the existing paradigm of chemical hazard and risk assessment and has been widely used in the field of chemical risk assessment and the evaluation of carcinogenicity at work. It will be a useful tool for prediction, and it is possible that it can help bring about a breakthrough in the prevention of occupational and environmental cancer.
To achieve high performance by exploiting instruction level parallelism aggressively in superscalar processors, it is necessary to overcome the limitation imposed by control dependences and data dependences which prevent instructions from executing parallel. Value prediction is a technique that breaks data dependences by predicting the outcome of an instruction and executes speculatively its data dependent instruction based on the predicted outcome. In this paper, a hybrid value prediction scheme with dynamic classification mechanism is proposed. We design a hybrid predictor by combining the last predictor, a stride predictor and a two-level predictor. The choice of a predictor for each instruction is determined by a dynamic classification mechanism. This makes each predictor utilized more efficiently than the hybrid predictor without dynamic classification mechanism. To show performance improvements of our scheme, we simulate the SPECint95 benchmark set by using execution-driven simulator. The results show that our scheme effect reduce of 45% hardware cost and 16% prediction accuracy improvements comparing with the conventional hybrid prediction scheme and two-level value prediction scheme.
Purpose: The current study aimed at assessing the association between neutrophil-lymphocyte ratio (NLR) and platelet lymphocyte ratio (PLR) for the prognosis of the surgical outcome of epithelial ovarian cancer (EOC). Materials and Methods: EOC patient medical records of surgical operations between January, 2005 and December, 2015 were reviewed and their data of clinicopathological complete blood counts (CBCs) and surgical outcomes were collected. To assess their effects on surgical outcomes, PLR and NLR optimal predictive values were determined and then compared with each other. Results: A statistically significant relation was found between surgical outcomes and NLR and PLR (p<0.001 and p<0.001), for which new cutoff points were gained (PLR: 192,3,293; NLR: 3). The sensitivity and specificity were 0.74 and 0.67, respectively for PLR and 0.74 and 0.58, for NLR. Conclusions: NLR and PLR seem to be useful methods for the prediction of surgical outcomes in patients with EOCs. Increased NLR and PLR proved to be beneficial for poor surgical outcomes. Moreover, PLR increase showed further help in the predicting outcome of EOC suboptimal debulking.
In this paper, we propose an improved model to provide users with a better long-term prediction of waterworks operation data. The existing prediction models have been studied in various types of models such as multiple linear regression model while considering time, days and seasonal characteristics. But the existing model shows the rate of prediction for demand fluctuation and long-term prediction is insufficient. Particularly in the deep running model, the long-short-term memory (LSTM) model has been applied to predict data of water purification plant because its time series prediction is highly reliable. However, it is necessary to reflect the correlation among various related factors, and a supplementary model is needed to improve the long-term predictability. In this paper, convolutional neural network (CNN) model is introduced to select various input variables that have a necessary correlation and to improve long term prediction rate, thus increasing the prediction rate through the LSTM predictive value and the combined structure. In addition, a multiple linear regression model is applied to compile the predicted data of CNN and LSTM, which then confirms the data as the final predicted outcome.
Hepatocellular carcinoma (HCC) is the sixth most common cancer and second leading cause of cancer-related death in the world. The aggressive but not always predictable pattern of HCC causes the limited treatment option and poorer outcome. Many researches had already proven the heterogeneity of HCC is one of the major challenges for treatment option and prognosis prediction. Molecular subtyping of HCC and selection of patient based on molecular profile can provide the optimization in the treatment and prognosis prediction. In this review, we have tried to summarize the molecular classification of HCC proposed by different valuable researches presented in the logistic way.
Purpose: Early prediction of prognosis of children resuscitated from cardiac arrest is a major challenge. We investigated the utility of electroencephalography (EEG) and laboratory studies for predicting of neurologic outcome in children resuscitated from cardiac arrest. Methods: We retrospectively analyzed medical records of patients who were resuscitated from cardiac arrest from 2006 to 2015 at the Gil Medical Center. Patients aged one month to 18 years were included. EEG analysis included background scoring, reactivity and seizure burden. EEG background was classified score 0 (normal/organized), score 1 (slow and disorganized), score 2 (discontinuous or burst suppression), and score 3 (suppressed and featureless). Neurologic outcome was evaluated by Pediatric Cerebral Performance Category (PCPC) at least 6 months after cardiac arrest. Results: Total 26 patients were evaluated. Nine patients showed good neurologic outcome (PCPC 1, 2, 3) and 17 patients showed poor neurologic outcome (PCPC 4, 5, 6). Patients of poor neurologic outcome group showed EEG background score 3 in 88.2%, whereas 44.4% in patients of good neurologic outcome group (P=0.028). Electrographic ictal discharges except non-convulsive status epilepticus were presented in 44.4% of good neurologic outcome group and 5.9% of poor neurologic outcome group (P=0.034). Ammonia and lactate levels were higher and pH levels were lower in poor outcome group than good neurologic outcome group. Conclusion: Suppressed and featureless EEG background is associated with poor neurologic outcome and electrographic seizures are associated with good neurologic outcome.
Background: This study used receiver operating characteristic curve to analyze Surveillance, Epidemiology and End Results (SEER) Ewing sarcoma (ES) outcome data. The aim of this study was to identify and optimize ES-specific survival prediction models and sources of survival disparities. Materials and Methods: This study analyzed socio-economic, staging and treatment factors available in the SEER database for ES. 1844 patients diagnosed between 1973-2009 were used for this study. For the risk modeling, each factor was fitted by a Generalized Linear Model to predict the outcome (bone and joint specific death, yes/no). The area under the receiver operating characteristic curve (ROC) was computed. Similar strata were combined to construct the most parsimonious models. Results: The mean follow up time (S.D.) was 74.48 (89.66) months. 36% of the patients were female. The mean (S.D.) age was 18.7 (12) years. The SEER staging has the highest ROC (S.D.) area of 0.616 (0.032) among the factors tested. We simplified the 4-layered risk levels (local, regional, distant, un-staged) to a simpler non-metastatic (I and II) versus metastatic (III) versus un-staged model. The ROC area (S.D.) of the 3-tiered model was 0.612 (0.008). Several other biologic factors were also predictive of ES-specific survival, but not the socio-economic factors tested here. Conclusions: ROC analysis measured and optimized the performance of ES survival prediction models. Optimized models will provide a more efficient way to stratify patients for clinical trials.
Objective: Atrophy and a high T2 signal of the hippocampus are known to be the principal MR imaging findings of hippocampal sclerosis. The purpose of this study was to determine whether or not individual MRI findings correlate with surgical outcome in patients with this condition. Materials and Methods: Preoperative MR imaging findings in 57 consecutive patients with pathologically-proven hippocampal sclerosis who underwent anterior temporal lobectomy and were followed-up for 24 months or more were retrospectively reviewed, and the results were compared with the postsurgical outcome (Engel classification). The MR images included routine sagittal T1-weighted and axial T2-weighted spin-echo images, and oblique coronal T1-weighted 3D gradient-echo and T2-weighted 2D fast spin-echo images obtained on either a 1.5 T or 1.0 T unit. The images were visually evaluated by two neuroradiologists blinded to the outcome; their focus was the presence or absence of atrophy and a high T2 hippocampal signal. Results: Hippocampal atrophy was seen in 96% of cases (55/57) [100% (53/53) of the good outcome group (Engel class I and II), and 50% (2/4) of the poor outcome group (class III and IV)]. A high T2 hippocampal signal was seen in 61% of cases (35/57) [62% (33/53) of the good outcome group and 50% (2/4) of the poor outcome group]. All 35 patients with a high T2 signal had hippocampal atrophy. 'Normal' hippocampus, as revealed by MR imaging, occurred in 4% of patients (2/57), both of whom showed a poor outcome (Engel class III). The presence or absence of hippocampal atrophy correlated well with surgical outcome (p<0.01). High T2 signal intensity did not, however, significantly correlate with surgical outcome (p>0.05). Conclusion: Compared with a high T2 hippocampal signal, hippocampal atrophy is more common and correlates better with surgical outcome. For the prediction of this, it thus appears to be the more useful indicator.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.