• Title/Summary/Keyword: out-of-plane fields

Search Result 107, Processing Time 0.024 seconds

Spanwise coherent structure of wind turbulence and induced pressure on rectangular cylinders

  • Le, Thai-Hoa;Matsumoto, Masaru;Shirato, Hiromichi
    • Wind and Structures
    • /
    • v.12 no.5
    • /
    • pp.441-455
    • /
    • 2009
  • Studying the spatial distribution in coherent fields such as turbulence and turbulence-induced force is important to model and evaluate turbulence-induced forces and response of structures in the turbulent flows. Turbulence field-based coherence function is commonly used for the spatial distribution characteristic of the turbulence-induced forces in the frequency domain so far. This paper will focus to study spectral coherent structure of the turbulence and induced forces in not only the frequency domain using conventional Fourier transform-based coherence, but also temporo-spectral coherence one in the time-frequency plane thanks to wavelet transform-based coherence for better understanding of the turbulence and force coherences and their spatial distributions. Effects of spanwise separations, bluff body flow, flow conditions and Karman vortex on coherent structures of the turbulence and induced pressure, comparison between turbulence and pressure coherences as well as intermittency of the coherent structure in the time-frequency plane will be investigated here. Some new findings are that not only the force coherence is higher than the turbulence coherence, the coherences of turbulence and forces depend on the spanwise separation as previous studies, but also the coherent structures of turbulence and forces relate to the ongoing turbulence flow and bluff body flow, moreover, intermittency in the time domain and low spectral band is considered as the nature of the coherent structure. Simultaneous measurements of the surface pressure and turbulence have been carried out on some typical rectangular cylinders with slenderness ratios B/D=1 (without and with splitter plate) and B/D=5 under the artificial turbulent flows in the wind tunnel.

The Structure of Three-dimensional Turbulent Flow Fields of a Cone Type Gas Swirl Burner (콘형 가스 스월버너의 3차원 난류 유동장 구조)

  • Kim, J.K.;Jeong, K.J.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.22-29
    • /
    • 2001
  • This paper represents axial mean velocity, turbulent kinetic energy and swirl number based on momentum flux measured in the X-Y plane and Y-Z plane respectively of a cone type gas swirl burner by using X-probe from the hot-wire anemometer system. This experiment is carried out at flow rates 350 and $450{\ell}/min$ respectively, which are equivalent to the combustion air flow rate necessary for heat release 15,000 kcal/hr in gas furnace, in the test section of a subsonic wind tunnel. Axial mean velocities and turbulent kinetic energies show that their maximum values exist centering around narrow slits situated radially on the edge of and in the forefront of a burner until $X/R{\fallingdotseq}1.5$, but they have a peculiar shape like a starfish diffusing and developing into inward and outward of a burner by means of the mixing between flows ejected from narrow slits, an inclination baffle plate and swirl vanes respectively according to downstream regions. Moreover, they show a relatively large value in the inner region of 0.5$S_m$ obtained by integration of velocity profiles shows a characteristic that has an inflection point composing of the maximum and minimum value until X/R<3, but shows close agreement with the geometric swirl number after a distance of X/R=3.

  • PDF

Development of Ground Control Software Platform for Industrial Application with Multiple small UAVs (복수 소형무인비행체 산업 응용을 위한 지상관제소프트웨어 플랫폼 개발)

  • Lim, Bae-Hyeon;Ha, Seok-Wun;Moon, Yong-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.5
    • /
    • pp.75-82
    • /
    • 2017
  • Recently, as the roles and utilization fields of UAV become more diverse, demand for high - level mission has been increasing. To solve this issue, researches on the operation of multiple small UAVs and related systems have been actively carried out. The multiple small UAVs based application system has a problem that the task complexity of control personnel increases because the control personnel must continuously control and manage several small UAVs. Hence, it is necessary to develop a software platform that can perform efficient control in order to employ a multiple small UAVs based application system successfully. In this paper, we propose an effective ground control software platform for application systems using multiple small UAVs. We first analyze the requirements for the software platform, and design and implement software based on the analysis. Simulation using the X-plane flight simulator shows that multiple flight data are effectively displayed and that the image data transmitted from many small UAVs are simultaneously displayed in real time.

Fluid-structure Interaction Analysis of Large Sandwich Panel Structure for Randomly Distributed Wind Load considering Gust Effects (거스트 영향이 고려된 랜덤 분포 풍하중에 대한 대형 샌드위치 패널 구조물의 유체-구조 연성해석)

  • Park, Dae Woong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.12
    • /
    • pp.1035-1044
    • /
    • 2013
  • Because of the high specific stiffness and strength inherent in the sandwich structure composed of facesheet that resists in-plane loads and a core that resists out-of-plane loads, it is often used for large and light-weighted structures. However, inevitably the increased flexibility allows greater deformation-based disturbances in the structures. Thus, it is necessary to analyze the structural safety. To obtain more accurate analytical results, the input disturbances must more closely simulate real load conditions; to improve accuracy, non-linear elements such as gust effects were considered. In addition, the structural safety was analyzed for the iso-grid sandwich panel structure using fluid-structure interactions. For a more realistic simulation, flow velocity fields, which consider the effects of irregular gust fluctuation, were generated and the coupled field was analyzed by mapping the pressure and displacement.

Characteristics of the Angular-dependent Exchange Coupling Bias in Multilayer [Pt/Co]N-IrMn with Toward-in Plane Applied Fields (박막수직방향에서 면방향으로 회전하는 인가자기장에 대한 다층박막 [Pt/Co]N-IrMn의 교환바이어스의 각도의존특성)

  • Kim, S.S.;Yim, H.I.;Rhee, J.R.;Lee, S.S.;Hwang, D.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.4
    • /
    • pp.142-146
    • /
    • 2008
  • The angular dependence of the exchange bias($H_{ex}$) and coercivity($H_c$) in multilayer $[Pt/Co]_N-IrMn$ with applied measuring field rotated toward in-plane at angle $\theta$ from perpendicular-to-plane, has been measured. Multilayer films consisting of $Si/SiO_2/Ta(50)/Pt(4)/[Pt(15)/Co(t_{Co})]_N/IrMn(50)/Ta(50)(in\;{\AA})$ were prepared by magnetron sputtering under typical base pressure below $2{\times}10^{-8}$ Torr at room temperature. Magnetization measurements were performed on a vibrating sample magnetometer and extraordinary Hall voltage measurement systems after cooling from 550 K under a field of 2 kOe applied along the perpendicular to film direction. The hysteresis loop shifts from the origin not only along the field axis but also along the magnetization axis. $H_{ex}$ and $H_c$ show a $1/cos{\theta}$ and $1/|cos{\theta}|$ dependence on the angle($\theta$) between the applied measuring field and the perpendicular-film direction, respectively. This $1/cos{\theta}$ dependence can be accounted for by considering the angular dependence of strong out-of-plane magnetic anisotropy introduced during the field cooling.

The Role of Slits and Swirl Vanes on the Turbulent Flow Fields in Gun-Type Gas Burner with a Cone-Type Baffle Plate (콘형 배플판을 갖는 Gun식 가스버너의 난류유동장에 대한 슬릿과 스월베인의 역할)

  • Kim, Jang-Kweon;Jeong, Kyu-Jo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.466-475
    • /
    • 2003
  • The gun-type gas burner adopted in this study is generally composed of eight slits and swirl vanes. Thus, this paper is studied to investigate the effect of slits and swirl vanes on the turbulent flow fields in the horizontal plane of gas swirl burner with a cone type baffle plate measured by using X-probe from hot-wire anemometer system. This experiment is carried out at flow rate 450 $\ell$/min in the test section of subsonic wind tunnel. The axial mean velocity component in the case of burner model with only swirl vanes shows the characteristic that spreads more remarkably toward the radial direction than axial one, it does, however, directly opposite tendency in the case of burner model with only slits. Consequently. both slits and swirl vanes composing of gun-type gas burner play an important role in decrease of the speed near slits and increase of the flow speed in the central part of a burner because the biggest speed spurted from slits encircles rotational flow by swirl vanes and it drives main flow toward the axial direction. Moreover, the turbulent intensities and turbulent kinetic energy of gun-type gas burner are distributed with a fairly bigger size within X/R<0.6410 than burner models which have only slits or swirl vanes because the rotational flow by swirl vanes and the fast jet flow by slits increase flow mixing, diffusion, and mean velocity gradient effectively.

A Four-node General Shell Element with Drilling DOFs (면내회전자유도를 갖는 4절점 곡면 쉘요소)

  • Chung, Keun-Young;Kim, Jae-Min;Lee, Eun-Haeng
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.37-52
    • /
    • 2012
  • In this study, a new 4-node general shell element with 6 DOFs per node is presented. Drilling rotational degrees of freedom are introduced by the variational principle with an independent rotation field. In formulation of the element, substitute transverse shear strain fields are used to avoid shear locking, while four nonconforming modes are applied in the in-plane displacement fields as a remedy for membrane locking. In addition, a direct modification method for nonconforming modes is employed in the numerical implementation of nonconforming modes to represent constant strain states. A 9-points integration rule is adopted for volume integration in the computation of the element stiffness matrix. With the combined use of these techniques, the developed shell element has no spurious zero energy modes, and can represent a constant strain state. Several numerical tests are carried out to evaluate the performance of the new element developed. The test results show that the behavior of the elements is satisfactory.

Expressive Characteristics of Floral Images in Contemporary Fashion (현대패션에 나타난 꽃 이미지의 표현특성)

  • Kim, Sun-Young
    • Journal of the Korean Society of Costume
    • /
    • v.60 no.8
    • /
    • pp.1-14
    • /
    • 2010
  • This study is a discussion of the expressive characteristics of contemporary fashion design with floral images. It aims to help understand the overall trends of contemporary fashion design and textile motif design and expand the potential expression fields of originative design to natural objects such as flowers. Methodologically the study analyzed 976 pieces of data gathered from Haute Couture and Pr$\hat{e}$t-$\grave{a}$-Porter collections of 2005S/S-2009F/W, according to their types of expression. The study results show a share of 42.7% for plane type expressions by printing or weaving and a share of 51.5% for relief type expressions, compared with 5.7% for solid type expressions. However, those expressions represented elegant femininity with emphasis on formative beauty and were applied to fashion accessories or hair adornments. The expressive characteristics found from the analysis were represented by natural images, feminine elegance, and decorative aesthetics of handicrafts. Flowers in the contemporary fashion purify the internal emotions of humankind stand for personality and beauty in many different ways of expression and serve as a means of expressing more artistic values breaking out of stereotype.

Estimation of Microwave Path Loss and Cross-Polarization Coupling in a Simple Urban Area

  • Yisok Oh;No, Chan-Ho;Sung, Hyuk-Je;Lee, Byung-Hoon;Koo, Yeon-Geon
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.30-36
    • /
    • 2001
  • Whereas it is well known that microwave propagation around corners of urban area is estimated well by the uniform geometrical theory of diffraction (UTD), it is not clear how much depolarization occurs at a given receiver position and how much transmission through walls affects to total path loss. This paper presents the results of the ray tracing simulation to answer these questions. Simulations of microwave propagation around corners were performed for various line-of-sight (LOS) and out-of-sight(OOS) positions of a receiver, by summing the electrical fields of reflected, diffracted and transmitted rays coherently. Since height difference between transmitter and receiver, as well as ground plane, causes depolarization, the ray tracing simulation estimates the cross-polarization coupling. It was found that the cross-polarization coupling decreases as receiver moves away from transmitter. Another part of the study focused on the signal transmitted through building walls of the corner. It was found that the transmitted field is dominant at OOS region when the conductivity of the walls is low (for example, lower than 0.0l S/m). The simulation results of the ray tracing technique in this study agreed well with an experimental measurement around corners.

  • PDF

Visual Tracking of Objects for a Mobile Robot using Point Snake Algorithm

  • Kim, Won;Lee, Choon-Young;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.30-34
    • /
    • 1998
  • Path Planning is one of the important fields in robot technologies. Local path planning may be done in on-line modes while recognizing an environment of robot by itself. In dynamic environments to obtain fluent information for environments vision system as a sensing equipment is a one of the most necessary devices for safe and effective guidance of robots. If there is a predictor that tells what future sensing outputs will be, robot can respond to anticipated environmental changes in advance. The tracking of obstacles has a deep relationship to the prediction for safe navigation. We tried to deal with active contours, that is snakes, to find out the possibilities of stable tracking of objects in image plane. Snakes are defined based on energy functions, and can be deformed to a certain contour form which would converge to the minimum energy states by the forces produced from energy differences. By using point algorithm we could have more speedy convergence time because the Brent's method gives the solution to find the local minima fast. The snake algorithm may be applied to sequential image frames to track objects in the images by these characteristics of speedy convergence and robust edge detection ability.

  • PDF