• 제목/요약/키워드: out-of-plane behavior

검색결과 237건 처리시간 0.025초

복합보강재를 이용한 보강점성토의 거동 (Behavior of Geosynthetic-Reinforced Clay)

  • 노한성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 토목섬유 특별세미나
    • /
    • pp.73-78
    • /
    • 2000
  • The reinforced soil has been widely used for constructing retaining walls and embankment with steep slope. However, the benefits of soil reinforcing are often-restricted by a lack of good quality backfill material. In this study, plane strain compression tests were carried out to study the effects of preloading on the behavior of geosynthetic-reinforced saturated clay. For the unreinforced and reinforced soil, drained and undrained shearing tests were peformed after anisotropic consolidation in a constant strain rate. A preoading test was carried out by preloading, creep, unloading, aging and undrained shearing after anisotropic consolidation(K=0.3, σ'₃=50 kPa). It was observed that a reinforced clay, Kanto loam, can have a great initial secant modulus in undraind condition by well compaction and over consolidation. The results shown that the increasing of drained strength should be used to apply a large preloading in the case of reinforced clay.

  • PDF

면외하중을 받는 보형 SC구조 시험체의 휨 및 전단특성에 관한 실험적 연구-시험방법을 중심으로- (Experimental Study on Bending and Shear Behavior of SC Structures under Out of Plane Load)

  • 박동수;정원섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.65-68
    • /
    • 2008
  • 구조실험에서 실험장치의 구성방법은 실험 결과에 결정적인 영향을 미치는 중요한 요소이다. 가력 장치와 치구를 어떻게 구성하느냐에 따라서 의도하는 실험조건이 구현될 수 있다. 특히, 실물구조물과 같은 대형 실험체를 이용하여 실험하는 경우에는 실험장치를 구성하는 경제적 비용을 감안하여 정확한 하중을 가력하기 위한 실험장치의 구성이 더욱 중요하다. 본 논문은 이와 같은 필요성에 의하여 구조실험시설에서 일반적으로 이용하고 있는 설비를 이용하여 경제적이고 효과적인 실험장치를 구성하여 대형 보형실험체의 실험을 수행하고 그 결과를 기술하기 위하여 작성되었다.

  • PDF

Behavior of light weight sandwich panels under out of plane bending loading

  • Ganapathi, S. Chitra;Peter, J. Annie;Lakshmanan, N.;Iyer, N.R.
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.775-789
    • /
    • 2016
  • This paper presents the flexural behavior & ultimate strength performance of innovative light weight sandwich panels of size $3{\times}1.2m$ with two different solidity ratios viz. 0.5 and 0.33 under out of plane bending load. From the experimental studies, it is observed that the flexural strength and the stiffness are increased by about 46% and five folds for lesser solidity ratio case. From the measured strains of the shear connectors, full shear transfer between the concrete wythes is observed. The yielding occurred approximately at 4% and 0.55% of the ultimate deformation for 100 mm & 150 mm thick panels, which shows the large ductility characteristics of the panels. From the study, it is inferred that the light weight sandwich panels behave structurally in a very similar manner to reinforced concrete panels. Further from the numerical study, it is observed that the numerical values obtained by FE analysis are in good agreement with the experimental observations.

고장력 강판의 점용접부에서 면내 굽힘 모멘트가 피로특성 및 균열 성장 거동에 미치는 영향에 관한 연구(I) - 실험적 검토 - (A Study on the Effect of Fatigue and Crack Propagation Behavior in Spot Weld of High Strength Steel( I ) - Experimental Examination -)

  • 성기찬;장경복;정진우;김기순;강성수
    • Journal of Welding and Joining
    • /
    • 제19권1호
    • /
    • pp.112-117
    • /
    • 2001
  • The factor affecting on the fatigue strength of spot welded specimen have been studied. To analyze and predict crack initiation position and propagation directions on the spot welded area are very important for strength design of the automobile body structure. In fact, there are a various of loads in running automobile but, it is impossible to replay like an actual conditions in the laboratory. So, in this study tensile-shear type and in-plane bending type specimens were used in fatigue test and includes an analysis of fatigue crack initiation position and propagation directions about earth specimens. The results obtained in the present study are summarized as follows: 1. In tensile-shear type fatigue test, the region of fatigue crack initiation position was affected by out-of-plane bending deformation due to bending angle. 2 In in-plane bending type fatigue test, the behavior of fatigue crack initiation position and propagation derections due to angle between upper plate and lower plate was dominated by magnitude of in-plane bending moment.

  • PDF

Crack constitutive model for the prediction of punching failure modes of fiber reinforced concrete laminar structures

  • Ventura-Gouveia, A.;Barros, Joaquim A.O.;Azevedo, Alvaro F.M.
    • Computers and Concrete
    • /
    • 제8권6호
    • /
    • pp.735-755
    • /
    • 2011
  • The capability of a multi-directional fixed smeared crack constitutive model to simulate the flexural/punching failure modes of fiber reinforced concrete (FRC) laminar structures is discussed. The constitutive model is implemented in a computer program based on the finite element method, where the FRC laminar structures were simulated according to the Reissner-Mindlin shell theory. The shell is discretized into layers for the simulation of the membrane, bending and out-of-plane shear nonlinear behavior. A stress-strain softening diagram is proposed to reproduce, after crack initiation, the evolution of the normal crack component. The in-plane shear crack component is obtained using the concept of shear retention factor, defined by a crack-strain dependent law. To capture the punching failure mode, a softening diagram is proposed to simulate the decrease of the out-of-plane shear stress components with the increase of the corresponding shear strain components, after crack initiation. With this relatively simple approach, accurate predictions of the behavior of FRC structures failing in bending and in shear can be obtained. To assess the predictive performance of the model, a punching experimental test of a module of a façade panel fabricated with steel fiber reinforced self-compacting concrete is numerically simulated. The influence of some parameters defining the softening diagrams is discussed.

엔진 운전시 크랭크샤프트의 면내.외 모드의 거동 해석 (Analysis of the Crankshaft Behavior on In-plane and Out-plane Mode at the Firing Stage)

  • 아미누딘;이해진;이정윤;오재응
    • 한국소음진동공학회논문집
    • /
    • 제16권4호
    • /
    • pp.319-328
    • /
    • 2006
  • 4-실린더 엔진의 작동 시 크랭크샤프트의 기계적 거동을 해석하는 방법에 관한 연구 논문이다 이 해석의 목적은 모드 해석을 단순화 하기위해 Pin 과 Arm을 일정하게 가정하고, 이를 통해 단순화된 크랭크샤프트의 특성을 연구하는 것이며, 해석을 통하여 얻어진 전달 함수에서의 고유진동수와 모드 형상을 실험을 통한 모드 해석과 비교하였다. 시뮬레이션을 통한 결과와 실험을 비교한 결과 해석치와 실험치의 값이 일치함을 확인할 수 있었고 이를 통하여 해석 모델을 검증하였다. 또한 검증된 모델을 통하여 엔진 작동 시 크랭크샤프트의 특성을 해석하고자 하였다. 초기 연소 조건에 기초하여 주파수 영역에서 크랭크샤프트의 동적 거동을 해석하기 위한 새로운 방법을 기술하였다. 새로운 기법은 엔진의 작동 조건에서 저널 베어링과 밸런서의 형상 변경을 통하여 얻어진 에너지 값을 계산하기 위해서 RMS값을 이용하였다.

Bending Behavior of Nailed-Jointed Cross-Laminated Timber Loaded Perpendicular to Plane

  • Pang, Sung-Jun;Kim, Kwang-Mo;Park, Sun-Hyang;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권6호
    • /
    • pp.728-736
    • /
    • 2017
  • In this study, the bending behavior of cross-laminated timber (CLT) connected by nails were investigated. Especially, the load-carrying capacity of the nail-jointed CLT under out-of-plane bending was predicted by the lateral resistance of the used nails. Three-layer nail-jointed CLT specimens and a nail connection were manufactured by 30 mm (thickness) ${\times}$ 100 mm (width) domestic species (Pinus koraiensis) laminas and Ø$3.15{\times}82mm$ nails using a nail-gun. Shear test for evaluating the nail lateral resistance and bending test for evaluating the load-carrying capacity of the nail-jointed CLT under out-of-plane bending were carried out. As a result, two lateral resistance of the used nail, the 5% fastener offset value and the maximum value, were 913 N and 1,534 N, respectively. The predicted load-carrying capacity of the nail-jointed CLT by the 5% offset nail lateral resistance was similar to the yield points on the actual load-displacement curve of the nail-jointed CLT specimens. Meanwhile, the nail-jointed CLT specimens were not failed until the tension failure of the bottom laminas occurred beyond the maximum lateral resistance of the nails. Thus, the measured maximum load carrying capacities of the nail-jointed CLT specimens, approximately 12,865 N, were higher than the predicted values, 7,986 N, by the maximum nail lateral resistance. This indicates that the predicted load-carrying capacity can be used for designing a structural unit such as floor, wall and roof able to support vertical loads in a viewpoint of predicting the actual capacities more safely.

평면 굽힘 피로하중에 의한 알루미늄 합금재의 모서리 균열 전파거동에 관한 연구 (An investigation of the behavior in the corner crack propagation of Al-Alloy by the plane bending fatigue)

  • 김영식;김영종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.49-63
    • /
    • 1984
  • The 5086-H116 Al-Alloy plate specimens having an edge through-thickness notch were investigated to find out the characteristics of the corner crack propagation by the plane bending fatigue. The experiments were also carried out in order to clarify the change of the corner crack propagation behaviour due to the various materials and their thicknesses. In addition, the retardation effect of overload on the corner crack propagation was quantatively studied. Main results obtained are as follows; 1. In the case of estimating the crack propagation rate of the corner crack, it is more reasonable to consider the growth rate of fracture surface area than that of crack length. 2. The shape of the corner crack growing in the plane plate under the bending fatigue can be estimated. 3. The crack propagation rate increases with the increasing of the thickness and the decreasing of the Young's modulus of materials. 4. Regardless of a thickness and kind of materials of specimen, the characteristics of the corner crack propagation can be concluded. 5. The retardation effect of overload is distinct in the corner crack propagation.

  • PDF

면외하중에 대한 비보강 조적벽의 내진성능 평가 (Seismic Evaluation of Face-Loaded Unreinforced Masonry Walls (URM))

  • 유은진;이한선
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.304-311
    • /
    • 2001
  • Unreinforced masonry is widely used as a structural material in residential constructions and known to have poor seismic performance in the out-of-plane rather than in-plane behavior. In countries of lower seismicity such as Korea, it is necessary to check the possibility of the mode of the out-of-plane failure. Though face loading is a major cause of the failure of masonary walls, Korean Seismic Code does not include provision for face-loaded unreinforced masonry walls. This paper briefly reviews the concept of analysis for unreinforced masonry walls subjected to face-load excitation proposed by Priestley, and its applicatility to Korean case.

  • PDF

Numerical investigation of predicting the in-plane behavior of infilled frame with single diagonal strut models

  • Bouarroudj, Mohammed A.;Boudaoud, Zeineddine
    • Structural Engineering and Mechanics
    • /
    • 제81권2호
    • /
    • pp.131-146
    • /
    • 2022
  • This study highlights the accuracy of several single strut models to predict the global response of infilled reinforced concrete (R/C) frames. To this aim, six experimental tests are selected to calibrate the numerical modeling. The width of the diagonal strut is calculated using several macro models from the literature. The mechanical properties of the diagonal strut are determined by using two methods: (a) by subtracting the bare frame response from that of the infilled frame, and (b) by calculating the axial strength in the diagonal direction. A combination between the different width and the axial force models is carried out to study the effects of each parameter on global response. Non-linear pushover analyses are conducted using SAP2000. The results indicate the accuracy of the macro-modeling approach to predict the behavior of the infilled frames.