• Title/Summary/Keyword: ougassing

Search Result 3, Processing Time 0.017 seconds

Vacuum properties of CFC (carbon fiber composits) (탄소섬유복합재(CFC)의 진공특성)

  • 인상렬;박미영
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4B
    • /
    • pp.497-506
    • /
    • 1999
  • Carbon has been widely used for the material of plasma facing components in fusion experiment devices like a tokamak, because carbon has good thermal and mechanical properties. However carbon gas a relatively high ougassing rate. Therefore the amount and the surface area of the carbon material used in the vessel will determine the background pressure of the vacuum vessel. In this experiment influences of carbon on the vacuum performance was investigated by measuring chamber pressure, ougassing rater and gas spectrum of carbon fiber composite (CFC) samples in various situations, pumping out, chamber baking, carbon heating (250~$500^{\circ}C$), exposure to atmosphere for maintenance of in-vessel components, etc., occurring routinely during tokamak operations.

  • PDF

Measurement of Real Outgassing Rate using Double Conductance Method (이중 콘덕턴스법에 의한 실기체방출률 측정)

  • 인상렬
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.3
    • /
    • pp.175-180
    • /
    • 1996
  • Double conductance method is proposed as an effectvie way to measure real outgassing rates of materials regardless of their adsorbing power. The real outgassing rate and the sticking coefficient of the CFC (carbon fiber composite) which is used widely as the material for armor plates infusion experiment devices were obtained by adopting this method. At $40^{\circ}C$ the real ougassing rate was $Pa, m^3/s.m^2$(in $N_2$ equivalent), which was higher than 5 times the measured one, and the sticking coefficient was about 0.018($H_2O\; and \;H_2$ were the main residual gases).

  • PDF

Corrosion of Silver by Outgassing from Rubber

  • Sakai, Jun'ichi;Omoda, Masataka;Ishikawa, Yuichi
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.130-133
    • /
    • 2008
  • Corrosion of silver by outgassed sulfur species from rubber has been investigated by means of quartz crystal microbalance technique (QCM) and cathodic reduction technique. Silver specimens were placed together with a rubber of predefined quantity in an enclosed environment. Corrosion progressed linearly with time and silver sulfide was found as the corrosion product during all the tests. No significant dependence on RH was observed, while the corrosion rate increased as temperature rose. Furthermore the corrosion rate increased logarithmically with the quantity of the rubber placed in the exposure environment. It may be suggested that the corrosion rate of silver is determined by the amount of outgassed sulfur species which is a function of temperature and the quantity of rubber contained in the exposure environment.