• Title/Summary/Keyword: osteogenic activity

Search Result 152, Processing Time 0.03 seconds

Anti-Osteoporosis Effects of the Fruit of Sea Buckthorn (Hippophae rhamnoides) through Promotion of Osteogenic Differentiation in Ovariectomized Mice

  • Kun Hee Park;Joo-Hyun Hong;Seon-Hee Kim;Jin-Chul Kim;Ki Hyun Kim;Ki-Moon Park
    • Journal of Web Engineering
    • /
    • v.14 no.17
    • /
    • pp.3604-3622
    • /
    • 2022
  • The fruit of Hippophae rhamnoides has been widely used for medicinal purposes because of its anti-inflammatory, antioxidant, antiplatelet, and antimicrobial effects. Since there are no clear reports on the therapeutic efficacy of H. rhamnoides in osteoporosis, this study aimed to confirm the potential use of H. rhamnoides for the treatment of osteoporosis through its osteogenic differentiation-promoting effect in ovariectomized mice. Through an in vitro study, we compared the effects of the EtOH extract of H. rhamnoides fruits (EHRF) on the differentiation of C3H10T1/2, a mouse mesenchymal stem cell line, into osteoblasts based on alkaline phosphatase (ALP) staining and the relative expression of osteogenesis-related mRNAs. The EHRF significantly stimulated the differentiation of mesenchymal stem cells into osteoblasts and showed 7.5 times (* p < 0.05) higher osteogenesis than in the untreated control. A solvent fractionation process of EHRF showed that the hexane-soluble fraction (HRH) showed 10.4 times (** p < 0.01) higher osteogenesis than in the untreated control. Among the subfractions derived from the active HRH by preparative HPLC fractionation, HRHF4 showed 7.5 times (* p < 0.05) higher osteogenesis than in the untreated naïve cells, and HRH and HRHF4 fractions showed 22.6 times (*** p < 0.001) stronger osteogenesis activity than in the negative control. Osteoporosis was induced by excision of both ovaries in 9-week-old female ICR mice for in vivo analysis, and two active fractions, HRH and HRHF4, were administered orally for three months. During the oral administration period, body weight was measured weekly, and bone mineral density (BMD) and body fat density were measured simultaneously using a DEXA machine once a month. In particular, during the in vivo study, the average BMD of the ovariectomized group decreased by 0.0009 g/cm2, whereas the average BMD of the HRH intake group increased by 0.0033 g/cm2 (* p < 0.05) and that of the HRHF4 intake group increased by 0.0059 g/cm2 (** p < 0.01). The HRH and HRHF4 intake groups significantly recovered the mRNA and protein expression of osteogenic genes, including ALP, Osteopontin, Runx2, and Osterix, in the osteoporosis mouse tibia. These findings suggest that the active fractions of H. rhamnoides fruit significantly promoted osteoblast differentiation in mesenchymal stem cells and increased osteogenic gene expression, resulting in an improvement in bone mineral density in the osteoporosis mouse model. Taken together, H. rhamnoides fruits are promising candidates for the prevention and treatment of osteoporosis.

Osteogenic Differentiation of Bone Marrow Stem Cell using Bi-phase Alginate Scaffold Including BMP-2 (BMP-2를 함유한 2상 알지네이트 담체를 이용한 골수줄기세포의 골분화)

  • Lim, Hyun-Ju;Kim, Hak-Tae;Oh, Eun-Jung;Kim, Tae-Jung;Ghim, Han-Do;Choi, Jin-Hyun;Chung, Ho-Yun
    • Archives of Plastic Surgery
    • /
    • v.37 no.3
    • /
    • pp.207-212
    • /
    • 2010
  • Purpose: The object of this study is to develop a novel BMP-2 delivery system for continuous osteogenic differentiation and to induce osteogenesis of stem cells using a bi-phase alginate carrier in vitro. Methods: Alginate nanoparticle loaded BMP-2 was prepared by the reverse emulsification-diffusion technique. Physical properties and release profiles of alginate carriers were measured by Instron and ELISA kit, respectively. Cell viability and alkaline phosphate activity of hBMSCs differentiation was also evaluated by MTS and Metra BAP assays, respectively. Results: Optimal concentration for bi-phase alginate carrier was determined as 2 wt% by evaluating mechanical and biological properties, and differentiation of BMSCs for bone regeneration. The 2% bi-phase alginate carrier had the lowest initial and final release ratio. In addition, the 2% bi-phase alginate carrier had a little higher ALP activity than the homogeneous carrier. An improved controlled release profile was obtained by combining alginate hydrogel with lyophilized particles. Conclusion: Bi-phase alginate carrier has many advantages such as biocompatibility and controlled release capability. It is expected to be effective as a scaffold and carrier in bone tissue engineering.

Effect of Acer tegmentosum Maxim. extract on differentiation of osteoblastic Primary calvarial osteoblasts cells (조골세포의 분화에 산겨릅나무 추출물이 미치는 영향)

  • Oh, Tae Woo;Shim, Ki-Shuk;Kim, Kwang-Youn;Cho, Won-Kyung;Park, Kwang Il;Ma, Jin Yeul
    • Herbal Formula Science
    • /
    • v.25 no.4
    • /
    • pp.527-536
    • /
    • 2017
  • Objectives : The present study, to confirm the osteoblast differentiation effects of Acer tegmentosum Maxim. (AT) extract. Methods : In this experiment, cell viability, Alizarin red S assay, and Alkaline phosphatase (ALP) activity with AT extract (50, $100{\mu}g/m{\ell}$). Also, we studied the expression of differentiation regulator with AT extract in primary calvarial osteoblasts cells (pOB). Results : As a result of AT treatment, we determined that AT extract stimulates ALP activity and alizarin red activities in the pOB cells for mineralization for 18 days. Moreover, these factors increasing osteogenic markers such as Runt-related transcription factor2 ($Run{\times}2$), osteocalcin (OC), osteopontin, osterix, smad1, smad5, activating transcription factor4 (ATF4) and collagen type I alpha 1. Conclusions : These results indicate that AT extract have effect on bone through the promotion of osteoblastic differentiation, suggesting that it could be used for the treatment of bone diseases.

Synergistic Effects of Chios Gum Mastic Extract and Low Level Laser Therapy on Osteoblast Differentiation

  • Lee, Ki-Hyun;Kim, Young-Seok;Yu, Su-Bin;Kang, Hae-Mi;Kwak, Hyun-Ho;Kim, In-Ryoung;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.41 no.2
    • /
    • pp.53-62
    • /
    • 2016
  • In the present study, we evaluated the effect of CGM on osteogenic differentiation of cultured osteoblasts, and determined whether combination treatment with LLLT had synergistic effects on osteogenic differentiation. The results indicated that CGM promoted proliferation, differentiation, and mineralization of osteoblasts at the threshold concentration of $10{\mu}g/ml$; whereas, CGM showed cytotoxic properties at concentrations above $100{\mu}g/ml$. ALP activity and mineralization were increased at concentrations above $10{\mu}g/ml$. CGM in concentrations up to $10{\mu}g/ml$ also increased the expression of osteoblast-activated factors including type I collagen, BMP-2, RUNX2, and Osterix. The CGM ($50{\mu}g/ml$) and LLLT (80 mW for 15 sec) combination treatment group showed the highest proliferation levels, ALP activity, and mineralization ratios. The combination treatment also increased the levels of phosphorylated forms of p38, ATF2, PKD, ERK, and JNK. In addition, the osteoblast differentiation factors including type I collagen, BMP-2, RUNX2, and Osterix protein levels were clearly increased in the combination treatment group. These results suggested that the combination treatment of CGM and LLLT has synergistic effects on the differentiation and mineralization of osteoblastic cells.

Inhibition of Osteoclast Differentiation and Promotion of Osteogenic Formation by Wolfiporia extensa Mycelium

  • Tae Hyun Son;Shin-Hye Kim;Hye-Lim Shin;Dongsoo Kim;Jin-Sung Huh;Rhim Ryoo;Yongseok Choi;Sik-Won Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1197-1205
    • /
    • 2023
  • Osteoporosis, Greek for "porous bone," is a bone disease characterized by a decrease in bone strength, microarchitectural changes in the bone tissues, and an increased risk of fracture. An imbalance of bone resorption and bone formation may lead to chronic metabolic diseases such as osteoporosis. Wolfiporia extensa, known as "Bokryung" in Korea, is a fungus belonging to the family Polyporaceae and has been used as a therapeutic food against various diseases. Medicinal mushrooms, mycelium and fungi, possess approximately 130 medicinal functions, including antitumor, immunomodulating, antibacterial, hepatoprotective, and antidiabetic effects, and are therefore used to improve human health. In this study, we used osteoclast and osteoblast cell cultures treated with Wolfiporia extensa mycelium water extract (WEMWE) and investigated the effect of the fungus on bone homeostasis. Subsequently, we assessed its capacity to modulate both osteoblast and osteoclast differentiation by performing osteogenic and anti-osteoclastogenic activity assays. We observed that WEMWE increased BMP-2-stimulated osteogenesis by inducing Smad-Runx2 signal pathway axis. In addition, we found that WEMWE decreased RANKL-induced osteoclastogenesis by blocking c-Fos/NFATc1 via the inhibition of ERK and JNK phosphorylation. Our results show that WEMWE can prevent and treat bone metabolic diseases, including osteoporosis, by a biphasic activity that sustains bone homeostasis. Therefore, we suggest that WEMWE can be used as a preventive and therapeutic drug.

Post-Translational Regulations of Transcriptional Activity of RUNX2

  • Kim, Hyun-Jung;Kim, Woo-Jin;Ryoo, Hyun-Mo
    • Molecules and Cells
    • /
    • v.43 no.2
    • /
    • pp.160-167
    • /
    • 2020
  • Runt-related transcription factor 2 (RUNX2) is a key transcription factor for bone formation and osteoblast differentiation. Various signaling pathways and mechanisms that regulate the expression and transcriptional activity of RUNX2 have been thoroughly investigated since the involvement of RUNX2 was first reported in bone formation. As the regulation of Runx2 expression by extracellular signals has recently been reviewed, this review focuses on the regulation of post-translational RUNX2 activity. Transcriptional activity of RUNX2 is regulated at the post-translational level by various enzymes including kinases, acetyl transferases, deacetylases, ubiquitin E3 ligases, and prolyl isomerases. We describe a sequential and linear causality between post-translational modifications of RUNX2 by these enzymes. RUNX2 is one of the most important osteogenic transcription factors; however, it is not a suitable drug target. Here, we suggest enzymes that directly regulate the stability and/or transcriptional activity of RUNX2 at a post-translational level as effective drug targets for treating bone diseases.

EFFECT OF DEXAMETHASONE CONCENTRATIONS ON OSTEOGENIC ACTIVITY OF CULTURED HUMAN PERIOSTEAL-DERIVED CELLS (배양된 인간 골막기원세포의 조골활성에 대한 덱사메타손 농도의 효과)

  • Kim, Jong-Ryoul;Park, Bong-Wook;Lee, Chang-Il;Hah, Young-Sool;Kim, Deok-Ryong;Cho, Yeong-Cheol;Sung, Iel-Yong;Byun, June-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.4
    • /
    • pp.287-293
    • /
    • 2009
  • Long-term treatment with glucocorticoid leads to the development of osteoporosis and osteonecrosis. In contrast to the marked inhibitory effect of pharmacological doses of glucocorticoids on bone formation, the relationship between physiological concentrations of glucocorticoids and osteoprogenitor cell proliferation and phenotypes has not been elucidated yet. In addition, the effects of dexamethasone treatment on the proliferation and osteoblastic differentiation of osteoprogenitor cells are also controversial. The purpose of this study was to examine the effects of dexamethasone on the proliferation and osteoblastic differentiation of periosteal-derived cells. Periosteal-derived cells were obtained from mandibular periosteums and introduced into the cell culture. After passage 3, the cells were further cultured for 21 days in the osteogenic induction medium with different dexamethasone concentrations of 0, 10, and 100 nM. The proliferation and osteoblastic phenotypes of periosteal-derived cells were promoted in dexamethasone-treated cells than in untreated cells. Among the dexamethasone-treated cells, cell proliferation was slightly greater in 10 nM dexamethasone-treated cells than in 100 nM dexamethasone-treated cells. Histochemical staining and the bioactivity of alkaline phosphatase (ALP) were higher in 100 nM dexamethasone-treated cells than in 10 nM dexamethasone-treated cells. Similarly, von Kossa-positive mineralization nodules and calcium content were also more evident in 100 nM dexamethasone-treated cells than in 10 nM dexamethasone-treated cells. These results suggest that dexamethasone enhances the in vitro osteoblastic differentiation of periosteal-derived cells. The present study also demonstrates that higher dexamethasone concentrations reduce the in vitro proliferation of periosteal-derived cells.

Osteogenic activity of an adenovirus expressing BMP-2 on Human Periodontal Ligament cells (Adenovirus에 의해서 발현된 BMP-2가 치주인대세포의 분화에 미치는 영향)

  • Kim, Kyoung-Hwa;Park, Yoon-Jeong;Lee, Sang-Cheul;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Han, Soo-Boo;Chung, Chong-Pyoung;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.2
    • /
    • pp.511-524
    • /
    • 2005
  • The regeneration of lost periodontal tissue is a major goal of therapy. Periodontal ligament cell(PDL) is a specialized connective tissue that connects cementum and alveolar bone to maintain and support teeth in situ and preserve tissue homoeostasis. Bone morphogenetic proteins(BMPs) have shown much potential in the reconstruction of the periodontum by stimulate new bone and new cementum formation. Limitiations of BMP administration to periodontal lesions is high dose delivery, BMP transient biological activity, and low bioavailability of factors at the wound site. Gene delivery method can be alternative treatment strategy to deliver BMPs to periodontal tissue. The purpose of this study is to investigate efficiency of BMP-2 gene delivery with cell-based therapy using PDL cells. PDL cell were transduced with adenoviruses encoding either BMP-2 or Lac-Z gene. To evaluate osteogenic activity of expressed BMP-2 on PDL cells, we investigated secreted BMP-2, cellular activity, ALPase, produced mineralized nodules. To evaluate collagen scaffold as carrier for transduced cell delivery, we examined morphology and secreted BMP-2 of transducd PDL cells on it. BMP-2 transducd PDL cells produced higher levels of BMP-2, ALPase, mineralized nodules than non transduced cells. Cellular activity of transduced cells was showed similar activity to non transduced cells. Transduce cells attached on collagen scaffold secreted BMP-2 at 7day and was showed similar morphology to non transduced cells. These results demonstrated that transduced PDL cells produced biologically active BMP-2 and collagen scaffold could be carrier of transducd cells.

177Lu-EDTMP radiation absorbed dose evaluation in man based on biodistribution data in Wistar rats

  • Reza Bagheri
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.254-260
    • /
    • 2023
  • Skeletal metastases are common in patients suffering from various primary cancers. Radiopharmaceuticals are an effective option for bone pain palliation. In this work, the radiation absorbed dose of 177Lu-EDTMP radiopharmaceutical was estimated for adult man based on biodistribution data in Wistar rats. The MIRD dose calculation method and the Sparks and Aydogan methodology were applied. The results shows that about 46% of injected activity is cumulated on the surface of the trabecular and cortical bones. Radiation absorbed doses of red bone marrow and osteogenic cells were estimated to about 1.1 and 6.2 mGy/MBq, respectively. The maximum administrated activity was obtained 27 MBq/kg of body weight with an effective dose of 0.23 mSv/MBq. The results were compared with other available data from literature. This study indicated that 177Lu-EDTMP provides therapeutic efficacy for achieving bone pain palliation with low undesired dose to other normal organs.

OSTEOGENIC ACTIVITY OF CULTURED HUMAN PERIOSTEAL-DERIVED CELLS IN A THREE DIMENSIONAL POLYDIOXANONE/PLURONIC F127 SCAFFOLD (Polydioxanone/pluronic F127 담체에 유입된 골막기원세포의 조골활성)

  • Lee, Jin-Ho;Oh, Se-Heang;Park, Bong-Wook;Hah, Young-Sool;Kim, Deok-Ryong;Kim, Uk-Kyu;Kim, Jong-Ryoul;Byun, June-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.6
    • /
    • pp.478-484
    • /
    • 2009
  • Three-dimensional porous scaffolds play an important role in tissue engineering strategies. They provide a void volume in which vascularization, new tissue formation, and remodeling can occur. Like any grafted materials, the ideal scaffold for bone tissue engineering should be biocompatible without causing an inflammatory response. It should also possess biodegradability, which provides a suitable three-dimensional environment for the cell function together with the capacity for gradual resorption and replacement by host bone tissue. Various scaffolds have already been developed for bone tissue engineering applications, including naturally derived materials, bioceramics, and synthetic polymers. The advantages of biodegradable synthetic polymers include the ability to tailor specific functions. The purpose of this study was to examine the osteogenic activity of periosteal-derived cells in a polydioxanone/pluronic F127 scaffold. Periosteal-derived cells were successfully differentiated into osteoblasts in the polydioxanone/pluronic F127 scaffold. ALP activity showed its peak level at 2 weeks of culture, followed by decreased activity during the culture period. Similar to biochemical data, the level of ALP mRNA in the periosteal-derived cells was also largely elevated at 2 weeks of culture. The level of osteocalcin mRNA was gradually increased during entire culture period. Calcium content was detactable at 1 week and increased in a time-dependent manner up to the entire duration of culture. Our results suggest that polydioxanone/pluronic F127 could be a suitable scaffold of periosteal-derived cells for bone tissue engineering.