• Title/Summary/Keyword: osteoclastogenesis

Search Result 175, Processing Time 0.03 seconds

Berberine Chloride Inhibits Receptor Activator of $NF-{\kappa}B$ Ligand-induced Osteoclastogenesis via Preventing ERK Activation

  • Cheon, Myeong-Sook;Kim, Myung-Hee;Lee, Su-Ui;Ryu, Shi-Yong;Kim, Ho-Kyoung;Min, Yong-Ki;Kim, Seong-Hwan
    • Korean Journal of Oriental Medicine
    • /
    • v.13 no.2 s.20
    • /
    • pp.157-164
    • /
    • 2007
  • An imbalance in bone remodeling that is caused by increased bone resorption over bone formation leads to most adult skeletal diseases including osteoporosis. Since the development of anti-resorptive agents from natural substances has recently gained more interest in the treatment of osteoporosis, we evaluated the effects of 222 natural compounds on receptor activator of $NF-{\kappa}B$ ligand (RANKL)-induced of tartrate-resistance acid phosphatase (TRAP) activity in RAW264.7 murine macrophage cell, and found that berberine chloride is one of compounds inhibiting RANKL-induced TRAP activity. Berberine chloride significantly inhibited the RANKL-induced TRAP activity and the formation of multinucleated osteoclasts in a dose-dependent manner. In addition, berberine chloride prevented the RANKL-induced mRNA expression of TRAP, matrix metalloproteinase 9 and c-Src, which have been known to be highly expressed in the process of osteoclastogenesis. Interestingly, berberine chloride prevented the RANKL-induced activation of extracellular signal-regulated kinase (ERK) which is one of mitogen-activated protein (MAP) kinases. In conclusion, berberine chloride could inhibit the osteoclastogenesis via preventing the activation of ERK/MAP kinase signaling pathway.

  • PDF

Hyperosmotic Stimulus Down-regulates $1{\alpha}$, 25-dihydroxyvitamin $D_3$-induced Osteoclastogenesis by Suppressing the RANKL Expression in a Co-culture System

  • Tian, Yu-Shun;Jeong, Hyun-Joo;Lee, Sang-Do;Kong, Seok-Heui;Ohk, Seung-Ho;Yoo, Yun-Jung;Seo, Jeong-Taeg;Shin, Dong-Min;Sohn, Byung-Wha;Lee, Syng-Ill
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.3
    • /
    • pp.169-176
    • /
    • 2010
  • The hyperosmotic stimulus is regarded as a mechanical factor for bone remodeling. However, whether the hyperosmotic stimulus affects $1{\alpha}$, 25-dihydroxyvitamin $D_3$ ($1{\alpha},25(OH)_2D_3$)-induced osteoclastogenesis is not clear. In the present study, the effect of the hyperosmotic stimulus on $1{\alpha},25(OH)_2D_3$-induced osteoclastogenesis was investigated in an osteoblast-preosteoclast co-culture system. Serial doses of sucrose were applied as a mechanical force. These hyperosmotic stimuli significantly evoked a reduced number of $1{\alpha},25(OH)_2D_3$-induced tartrate-resistant acid phosphatase-positive multinucleated cells and $1{\alpha},25(OH)_2D_3$-induced bone-resorbing pit area in a co-culture system. In osteoblastic cells, receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL) and Runx2 expressions were down-regulated in response to $1{\alpha},25(OH)_2D_3$. Knockdown of Runx2 inhibited $1{\alpha},25(OH)_2D_3$-induced RANKL expression in osteoblastic cells. Finally, the hyperosmotic stimulus induced the overexpression of TonEBP in osteoblastic cells. These results suggest that hyperosmolarity leads to the down-regulation of $1{\alpha},25(OH)_2D_3$-induced osteoclastogenesis, suppressing Runx2 and RANKL expression due to the TonEBP overexpression in osteoblastic cells.

Physalin D inhibits RANKL-induced osteoclastogenesis and bone loss via regulating calcium signaling

  • Ding, Ning;Lu, Yanzhu;Cui, Hanmin;Ma, Qinyu;Qiu, Dongxia;Wei, Xueting;Dou, Ce;Cao, Ning
    • BMB Reports
    • /
    • v.53 no.3
    • /
    • pp.154-159
    • /
    • 2020
  • We investigated the effects of physalin A, B, D, and F on osteoclastogenesis induced by receptor activator of nuclear factor κB ligand (RANKL). The biological functions of different physalins were first predicted using an in silico bioinformatic tool (BATMAN-TCM). Afterwards, we tested cell viability and cell apoptosis rate to analyze the cytotoxicity of different physalins. We analyzed the inhibitory effects of physalins on RANKL-induced osteoclastogenesis from mouse bone-marrow macrophages (BMMs) using a tartrate-resistant acid phosphatase (TRAP) stain. We found that physalin D has the best selectivity index (SI) among all analyzed physalins. We then confirmed the inhibitory effects of physalin D on osteoclast maturation and function by immunostaining of F-actin and a pit-formation assay. On the molecular level, physalin D attenuated RANKL-evoked intracellular calcium ([Ca(2+)](i)) oscillation by inhibiting phosphorylation of phospholipase Cγ2 (PLCγ2) and thus blocked the downstream activation of Ca2+/calmodulin-dependent protein kinases (CaMK)IV and cAMP-responsive element-binding protein (CREB). An animal study showed that physalin D treatment rescues bone microarchitecture, prevents bone loss, and restores bone strength in a model of rapid bone loss induced by soluble RANKL. Taken together, these results suggest that physalin D inhibits RANKL-induced osteoclastogenesis and bone loss via suppressing the PLCγ2-CaMK-CREB pathway.

Inhibition of $IL-1{\beta}$ and IL-6 in Osteoblast-Like Cell by Isoflavones Extracted from Sophorae fructus

  • Joo, Seong-Soo;Kang, Hee-Cheol;Choi, Min-Won;Choi, Young-Wook;Lee, Do-ik
    • Archives of Pharmacal Research
    • /
    • v.26 no.12
    • /
    • pp.1029-1035
    • /
    • 2003
  • Osteoporosis is recognized as one of the major hormonal deficiency diseases, especially in menopausal women and the elderly. When estrogen is reduced in the body, local factors such as IL-1 $\beta$ and IL-6, which are known to be related with bone resorption, are increased and promote osteoclastogenesis, which is responsible for bone resorption. In the present study, we investigated whether glucosidic isoflavones (Isocal, PIII) extracted from Sophorae fructus affect the proliferation of osteoblasts and prevent osteoclastogenesis in vitro by attenuating upstream cytokines such as IL-1$\beta$ and IL-6 in a human osteoblastic cell line (MG-63) and in a primary osteoblastic culture from SD rat femurs. Interestingly, IL-1$\beta$ and IL-6 mRNA were significantly suppressed in osteoblast-like cells treated with 17$\beta$-estradiol (E2) and PIII when compared to positive control (SDB), and this suppression was more effective at $10^{-8}$% than at the highest concentration of $10^{-4}$%. In addition, these were confirmed in protein levels using ELISA assay. In the cell line, the cells showed that E2 was the most effective in osteoblastic proliferation over the whole range of concentration ($10^{-4}%-10^{-12}$%), even though PIII also showed the second greatest effectiveness at $10^{-8}$%. Nitric oxide (NO) was significantly (p<0.05) upregulated in PIII and E2 over the concentration range $10^{-6}% to 10^{-8}$% when compared to SDB, without showing any dose dependency. In bone marrow primary culture, we found by TRAP assay that PIII effectively suppressed osteoclastogenesis next to E2 in comparison with SDB and culture media (control). In conclusion, these results suggest that local bone-resorbing cytokines can be regulated by PIII at lower concentrations and that, therefore, PIII may preferentially induce anti-osteoporosis response by attenuating osteoclastic differentiation and by upregulating NO.

Design of a RANK-Mimetic Peptide Inhibitor of Osteoclastogenesis with Enhanced RANKL-Binding Affinity

  • Hur, Jeonghwan;Ghosh, Ambarnil;Kim, Kabsun;Ta, Hai Minh;Kim, Hyunju;Kim, Nacksung;Hwang, Hye-Yeon;Kim, Kyeong Kyu
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.316-321
    • /
    • 2016
  • The receptor activator of nuclear factor ${\kappa}B$ (RANK) and its ligand RANKL are key regulators of osteoclastogenesis and well-recognized targets in developing treatments for bone disorders associated with excessive bone resorption, such as osteoporosis. Our previous work on the structure of the RANK-RANKL complex revealed that Loop3 of RANK, specifically the non-canonical disulfide bond at the tip, performs a crucial role in specific recognition of RANKL. It also demonstrated that peptide mimics of Loop3 were capable of interfering with the function of RANKL in osteoclastogenesis. Here, we reported the structure-based design of a smaller peptide with enhanced inhibitory efficiency. The kinetic analysis and osteoclast differentiation assay showed that in addition to the sharp turn induced by the disulfide bond, two consecutive arginine residues were also important for binding to RANKL and inhibiting osteoclastogenesis. Docking and molecular dynamics simulations proposed the binding mode of the peptide to the RANKL trimer, showing that the arginine residues provide electrostatic interactions with RANKL and contribute to stabilizing the complex. These findings provided useful information for the rational design of therapeutics for bone diseases associated with RANK/RANKL function.

Effects of different calcium-silicate based materials on fracture resistance of immature permanent teeth with replacement root resorption and osteoclastogenesis

  • Gabriela Leite de Souza;Gabrielle Alves Nunes Freitas;Maria Tereza Hordones Ribeiro;Nelly Xiomara Alvarado Lemus;Carlos Jose Soares;Camilla Christian Gomes Moura
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.2
    • /
    • pp.21.1-21.15
    • /
    • 2023
  • Objectives: This study evaluated the effects of Biodentine (BD), Bio-C Repair (BCR), and mineral trioxide aggregate (MTA) plug on the fracture resistance of simulated immature teeth with replacement root resorption (RRR) and in vitro-induced osteoclastogenesis. Materials and Methods: Sixty bovine incisors simulating immature teeth and RRR were divided into 5 groups: BD and BCR groups, with samples completely filled with the respective materials; MTA group, which utilized a 3-mm apical MTA plug; RRR group, which received no root canal filling; and normal periodontal ligament (PL) group, which had no RRR and no root canal filling. All the teeth underwent cycling loading, and compression strength testing was performed using a universal testing machine. RAW 264.7 macrophages were treated with 1:16 extracts of BD, BCR, and MTA containing receptor activator of nuclear factor-kappa B ligand (RANKL) for 5 days. RANKL-induced osteoclast differentiation was assessed by staining with tartrate-resistant acid phosphatase. The fracture load and osteoclast number were analyzed using 1-way ANOVA and Tukey's test (α = 0.05). Results: No significant difference in fracture resistance was observed among the groups (p > 0.05). All materials similarly inhibited osteoclastogenesis (p > 0.05), except for BCR, which led to a lower percentage of osteoclasts than did MTA (p < 0.0001). Conclusions: The treatment options for non-vital immature teeth with RRR did not strengthen the teeth and promoted a similar resistance to fractures in all cases. BD, MTA, and BCR showed inhibitory effects on osteoclast differentiation, with BCR yielding improved results compared to the other materials.

Deficiencies of Homer2 and Homer3 accelerate aging-dependent bone loss in mice

  • Kang, Jung Yun;Kang, Namju;Shin, Dong Min;Yang, Yu-Mi
    • International Journal of Oral Biology
    • /
    • v.45 no.3
    • /
    • pp.126-133
    • /
    • 2020
  • Homer proteins are scaffold proteins that regulate calcium (Ca2+) signaling by modulating the activity of multiple Ca2+ signaling proteins. In our previous report, Homer2 and Homer3 regulated NFATc1 function through its interaction with calcineurin, which then acted to regulate receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone metabolism. However, to date, the role of Homers in osteoclastogenesis remains unknown. In this study, we investigated the roles of Homer2 and Homer3 in aging-dependent bone remodeling. Deletion of Homer2/Homer3 (Homer2/3 DKO) markedly decreased the bone density of the femur. The decrease in bone density was not seen in mice with Homer2 (Homer2-/-) and Homer3 (Homer3-/-) deletion. Moreover, RANKL treatment of bone marrow-derived monocytes/macrophages in Homer2/3 DKO mice significantly increased the formation of multinucleated cells and resorption areas. Finally, Homer2/3 DKO mice decreased bone density in an aging-dependent manner. These findings suggest a novel potent mode of bone homeostasis regulation through osteoclasts differentiation during aging by Homer proteins, specifically Homer2 and Homer3.

Effects of Kanghwalsokdan-tang Gamibang Water Extract on Osteoclast Differentiation and Osteoblast Proliferation (강활속단탕가미방(羌活續斷湯加味方)이 파골세포 분화 및 조골세포 활성에 미치는 영향)

  • Jung, Eun-Hye;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.29 no.2
    • /
    • pp.66-82
    • /
    • 2016
  • Objectives : This study was conducted to evaluate the effect of Kanghwalsokdan-tang Gamibang water extract (KSG) on osteoporosis. Methods : RANKL-stimulated RAW 264.7 was used to evaluate inhibitory effect of KSG osteoclast differentiation and gene expression. We counted TRAP (+) multinucleated cells and measured TRAP activity and mRNA expressions of osteoclastogenesis-related genes (NFATc1, MITF, JNK1, cathepsin K, MMP-9) to figure out the effect of KSG on osteoclast. Osteoblastogenesis was also determined in rat calvarial cell. Alkaline phosphatase (ALP) activity, bone matrix protein and collagen synthesis were measured by using murine calvarial cell. Results : KSG inhibited the differentiation of osteoclast precursor cell and expression of genes related osteoclastogenesis like NAFTc1, MITF, c-fos, JNK1, Cathepsin K, MMP-9 and TRAP. KSG increased cell division and function of osteoblast separated from the skull of a rat and ALP synthesis, biosynthesis of bone matrix protein and collagen. Conclusions : Reviewing these results, KSG has efficacy on osteoclast inhibition and osteoblast activation. After further study, KSG will be able to apply for osteoporosis treatment and prevention.

Inhibitory Effects of Curcuma xanthorrhiza Supercritical Extract and Xanthorrhizol on LPS-Induced Inflammation in HGF-1 Cells and RANKL-Induced Osteoclastogenesis in RAW264.7 Cells

  • Kim, Siyeon;Kook, Kyo Eun;Kim, Changhee;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1270-1281
    • /
    • 2018
  • Periodontal disease is triggered by the host immune response to pathogens in the microbial biofilm. Worsening of periodontal disease destroys the tooth-supporting tissues and alveolar bone. As oral inflammation can induce systemic diseases in humans, it is important to prevent periodontal disease. In this study, we demonstrated that Curcuma xanthorrhiza supercritical extract (CXS) and its active compound, xanthorrhizol (XAN), exhibit anti-inflammatory effects on lipopolysaccharide (LPS)-treated human gingival fibroblast-1 cells and anti-osteoclastic effects on receptor activator of nuclear factor kappa B ligand (RANKL)-treated RAW264.7 cells. LPS-upregulated inflammatory factors, such as nuclear factor kappa B p65 and $interleukin-1{\beta}$, were prominently reduced by CXS and XAN. In addition, RANKL-induced osteoclastic factors, such as nuclear factor of activated T-cells c1, tartrate-resistant acid phosphatase, and cathepsin K, were decreased in the presence of CXS and XAN. CXS and XAN inhibited the mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1) signaling pathway. Collectively, these results provide evidence that CXS and XAN suppress LPS-induced inflammation and RANKL-induced osteoclastogenesis by suppressing the MAPK/AP-1 pathway.

The Molecular Mechanism of Baicalin on RANKL-induced Osteoclastogenesis in RAW264.7 Cells

  • Ko, Seon-Yle
    • International Journal of Oral Biology
    • /
    • v.38 no.2
    • /
    • pp.67-72
    • /
    • 2013
  • This study examined the anti-osteoclastogenic effects of baicalin on receptor activator of NF-${\kappa}$B ligand (RANKL)-induced RAW264.7 cells. Baicalin is a flavonoid that is produced by Scutellaria baicalensis and is known to have multiple biological properties, including antibacterial, anti-inflammatory and analgesic effects. The effects of baicalin on osteoclasts were examined by measuring 1) cell viability; 2) the formation of tartrate-resistant acid phosphatase (TRAP) (+) multinucleated cells; 3) RANK/RANKL signaling pathways and 4) mRNA levels of osteoclast-associated genes. Baicalin inhibited the formation of RANKL-stimulated TRAP (+) multinucleated cells and also suppressed the RANKL-stimulated activation of p-38, ERK, cSrc and AKT signaling. Baicalin also inhibited the RANKL-stimulated degradation of $I{\kappa}B$ in RAW264.7 cells. In addition, the RANKL-stimulated induction of NFATc1 transcription factors was found to be abrogated by this flavonoid. Baicalin was further found to decrease the mRNA expression of osteoclast-associated genes, including carbonic anhydrase II, TRAP and cathepsin K in the RAW264.7 cells. Our data thus demonstrate that baicalin inhibits osteoclastogenesis by inhibiting the RANKL-induced activation of signaling molecules and transcription factors in osteoclast precursors.