• Title/Summary/Keyword: osmotic solution

Search Result 152, Processing Time 0.024 seconds

Studies on the Improvement and Management of Hill Pasture (산지초지 개량과 관리에 관한 연구)

  • ;David Leung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.4
    • /
    • pp.329-344
    • /
    • 1997
  • To improve germination and growth of forages of hill pasture seeds of several forages were osmotically primed with polyethylene glycol (PEG) under different PEG concentrations, treatment periods, and temperatures. Seeds were coated with several materials, and tested for germination. The best primed or coated seeds in germination tests were surface sow on hilly area. The results obtained are summarized as follows; 1. Osmotic priming with PEG accelerated germination of forages and reduced time taken for germination. 2. Germinability was best when the seeds of Tama ryegrass or orchardgrass were treated for 6-9 days at 30g PEG1100 ml water, red clover or white clover for 3, or 9 days in 20g PEG1100 ml water at $10^{\circ}C$. 3. Priming seeds of Tama ryegrass or orchardgrass in 30% PEG solution for 6 days, and seeds of red clover or white clover in 20% PEG solution for 6 days at $15^{\circ}C$ were most effective in germination, similar to priming at $10^{\circ}C$ . 4. Priming seeds of Tama ryegrass at 15C, and orchardgrass, red clover, or white clover at $10^{\circ}C$ were effective in germination than priming at other temperatures. 5. Osmotic priming with PEG accelerated germination of forages compared to coated seeds in Petri-dishes, while coated seeds germinated more slowly, but showed better emergence and superior growth to those of primed or intact seeds in the field. 6. Priming seeds increased yield slightly, and coating seeds significantly increased its yield on hilly area.

  • PDF

On the Red Cell Fragility in the Normal and Anemic Professional Blood Donors (건강인(健康人) 및 직업적(職業的) 매혈(賣血)로 인(因)한 실혈성(失血性) 빈혈자(貧血者)의 적혈구(赤血球) 취약성(脆弱性)에 관(關)하여)

  • Lee, Suck-Kang;Yoo, Kwang-Soo;Kim, Hyung-Kyu;Kwak, Dong-Soo
    • The Korean Journal of Physiology
    • /
    • v.5 no.2
    • /
    • pp.1-7
    • /
    • 1971
  • The osmotic and mechanical red cell fragility of the professional blood donors, who were found to be anemic as the result of frequent and repeated blood loss the past 5-6 years, were compared with that of the normal person while incubating the blood at $4-6^{\circ}C$ for 28 days. The fragility was expressed as % hemolysis occured during the incubation, and the following results were obtained: 1. The osmotic fragility in the normal persons (i.e, ; control group) progressively increased as the incubation became longer, and % hemolysis in 0.42% NaCl solution at 0, 10, 15, 21 and 28 incubation day was 31.90, 50.20, 41.68, 43.50 and 55.40 respectively. The mechanical fragility. in the normal red cells ranged between the minimum of 0.00% to the maximum of 5.80% both in 0.90 and 0.66% of NaCl solutions. 2. The hemolysis curve obtained in the red cell osmotic fragility from three cases of the anemic persons (i.e,; experimental group) showed a significant left side shift comparing with the normal in general which indicates that the fragility was more increased in the experimental group. The mechanical fragility in the experimental group ranged between the minimum 0.00% to the maximum 19.00% both in 0.90 and 0.66% of NaCl solutions. 3. The red cells of the chronic anemic person due to the frequent blood loss as the professional blood donor exhibit significantly marked increase both in osmotic and mechanical fragility comparing with the normal, and the tendency was more prominent as the incubation period became longer.

  • PDF

Properties and Disalinization of Salt-affected Soil (간척지 염해토양의 특성과 제염기법)

  • Son, Jae-Kwon;Song, Jae-Do;Shin, Won-Tae;Lee, Su-Hwan;Ryu, Jin-Hee;Cho, Jae-Young
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.2
    • /
    • pp.273-287
    • /
    • 2016
  • Accumulation of excessive salt in Reclaimed coastal tidelands can reduce crop yields, reduce the effectiveness of irrigation, degradation of soil structure, and affect other soil properties. These salts has shown to cause specific ions in the plant over a period of time leads to ion toxicity or ion imbalance and a continuous osmotic phase that prevents water uptake by plants due to osmotic pressure of saline soil solution. This review focuses on the characteristics of salt-affected soils, mechanisms of salt-tolerance plants, desalinization technology, and soil management to maintain sustainable agro-ecosystem in salt-affected soils.

Studies on the Leaf Photosynthesis of Salt-Stressed Rice Cultivars (염류처리에 따른 벼의 개엽광합성에 관한 연구)

  • 조동하
    • Korean Journal of Plant Resources
    • /
    • v.7 no.1
    • /
    • pp.97-101
    • /
    • 1994
  • The effects of NaCl salinity on the leaf photosynthesis and water relation of two cultivars of rice(Oryza sativa L.) , the salt-tolerant cultivar Seohae and the salt-senstive cultivar Iri-380 were exam-ined. Two cultivars of rice were grown for 14 days in nutrient solution at SOmM NaCl. Comparing theieaf Na content of two cultlvars, Seohae showed high accumulation of Na content in the leaf blade, while Iri-380 showed low. The Na content in leaf blade reduced the rate of leaf photosynthesis. Salt-tolerant cultivar Seohae was less decreased the rate of leaf photosynthesis than salt- sensitive cultivarIri-380. And Seohae showed larger decreased the osmotic potential in the leaves than Iri-380. This in-dicates that in the salt-tolerant cultivar, osmotic adjustment is developed under saliniEation.

  • PDF

Isolation, Culture, and Fusion of Nicotiana Protoplasts (원형질체 분리, 배양 및 Nicotiana 종간 세포융합에 관한 연구)

  • 윤경은;김준철;최상수;손세호
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.1 no.2
    • /
    • pp.138-149
    • /
    • 1979
  • For the preliminary study on tobacco cell fusion as one of new breeding techniques, the conditions that would be most effective in isolation, fusion, and culture of tobacco protoplasts were examined ; 1. The enzyme solution of 0.5% macerozyme and 2% cellulase( or meicellase) was the most economic and efficient in isolating protoplasts from tobacco leaves. 2. The proper incubation period of tobacco leaves in cell wall digesting solution was 4 hours. 3. As an osmotic stabilizer, sorbitol or mannitol solutions were employed. The concentration of 0.5~0.7 M of either hexitol gave satisfying results as the osmotic stabilizer. 4. The calcium concentration appeared to be an important factor in protoplast fusion. The adhesion of protoplasts was enhanced by enrichment of calcium ion in PEG solution. The highest frequency of protoplast fusion was obtained when tobacco protoplasts were incubated in PEG solution. containing 9mM CaCl2. 5. Cell divisions of the isolated protoplasts were continued and have generated colonies when they were grown on B-5 medium at 28$^{\circ}C$.

  • PDF

Isolation of Protoplasts from Tomato Root by Two-step Osmotic Treatment (토마토 뿌리조직으로부터 두 단계 삼투압 처리에 의한 원형질체의 분리)

  • Shin, Dae-Seop;Han, Min-Woo;Kim, Young-Kee
    • Applied Biological Chemistry
    • /
    • v.47 no.2
    • /
    • pp.192-196
    • /
    • 2004
  • In order to measure cellular physiological activity including ion channel activity, protoplasts were isolated from the root tissue of tomato plant. The general methods recommended were not efficient enough to make protoplasts from the root tissue. Among various conditions tested, we found that a two-step treatment of osmosis is very efficient for the isolation of protoplasts. In this procedure, root tissues were preincubated in a solution containing 300 mM sorbitol for 30 min. Then, they moved to the reaction solution containing 700 mM sorbitol as well as cell wall-digesting enzymes. The formation of protoplast was greatly increased by this method. In order to find the optimal condition of the two-step method, various conditions of pH, osmotic pressure, incubation time, and the concentrations of cell wall-digesting enzymes were tested. The yield of protoplast isolation was maximal at pH 5.0 after 2 hr incubation. Mixed enzymes of 3% cellulase, 1 % macerozyme, and 0.1 % pectolyase showed maximal protoplast isolation. The physiological activity of isolated protoplast evaluated by measuring the cellular ATPase activity was as high as that measured from the preparation of root tissue. The protoplasts isolated by this method were remained healthy up to 4 hrs which is enough time to measure the cellular physiological activity. These results show that the two-step treatment of osmotic pressure was successful to obtain high yield of healthy protoplast from tomato root tissue.

Forward Osmosis Based Seawater Desalination using Liquid Fertilizer as Draw Solution (액상 비료를 유도 용액으로 사용하는 정삼투 기반의 해수 담수화)

  • Park, Seong-Jik;An, Hee-Kyung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.2
    • /
    • pp.21-27
    • /
    • 2013
  • The present study explored the way to desalinate seawater for agricultural irrigation using forward osmosis (FO) process using liquid fertilizer as draw solution. FO experiments were performed in a cross flow mode using flat sheet FO membrane. The effect of membrane orientation, flow rate, and draw solution concentration on the performance of forward osmosis was investigated by measuring water flux of forward osmosis membrane. The water flux when the draw solution was placed against the membrane active layer was lower than the water flux when the feed solution was placed against the membrane active layer. This results indicated that the decrease of effective osmotic pressure by dilutive internal concentration polarization was less than that by concentrative internal concentration polarization. Increasing flow rate from 66.7 to 133.1 $cm^3$/min resulted in increase of the water flux when the membrane active layer orient to draw solution and feed solution, respectively. The reduction of resistance to water flow increased water flux at higher flow rate. The water flux of FO membrane increased with increasing draw solution concentration from 10000 to 30000 mg/L. The water flux for $KH_2PO_4$ draw solution was similar to that for commercial fertilizer. Optimization of FO process would contribute to economically desalinate brackish water for agricultural use.

Physiological Factors Depressing Feed Intake and Saliva Secretion in Goats Fed on Dry Forage

  • Sunagawa, K.;Ooshiro, T.;Nakamura, N.;Ishii, Y.;Nagamine, I.;Shinjo, A
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.60-69
    • /
    • 2007
  • Ruminants eating dry forage secrete large volumes of saliva which results in decreased plasma volume (hypovolemia) and the loss of $NaHCO_3$ from the blood. The present research investigated whether or not hypovolemia and the loss of $NaHCO_3$ from the blood in goats brought about by dry forage feeding actually depresses feed intake and saliva secretion, respectively. The present experiment consisted of three treatments (NI, ASI, MI). In the control treatment (NI), a solution was not infused. In the ASI treatment, i.v. infusion of artificial parotid saliva was initiated 1 h before feeding and continued for the entire 2 h feeding period. In the MI treatment, iso-osmotic mannitol solution was infused. The NI treatment showed that hematocrit and plasma total protein concentration were increased due to decreased circulating plasma volume brought about by feeding. In the ASI treatment, the fluid and $NaHCO_3$ that were lost from the blood because of a feeding-induced acceleration of saliva secretion was replenished with an intravenous infusion of artificial parotid saliva. This replenishment lessened the levels of suppression on both feeding and parotid saliva secretion. When only the lost fluid was replenished with an intravenous infusion of iso-osmotic mannitol solution in the MI treatment, the degree of feeding suppression was lessened but the level of saliva secretion suppression was not affected. These results indicate that the marked suppression of feed intake during the initial stages of dry forage feeding was caused by a feeding-induced hypovolemia while the suppression of saliva secretion was brought about by the loss of $NaHCO_3$ from the blood due to increased saliva secretion during the initial stages of feeding.

Optimization of Pre-treatment Process for Manufacturing Apple Jangachi (사과장아찌 제조를 위한 전처리 공정의 최적화)

  • Oh, Chul-Hwan
    • Culinary science and hospitality research
    • /
    • v.24 no.1
    • /
    • pp.105-113
    • /
    • 2018
  • In this study, optimized pre-treatment conditions were investigated to improve the quality of gochujang apple jangachi. The moisture content was decreased by 14% in 60% sugar solution and 17% in 30% salt solution during 12 hours. On the one hand, in the case of dry sugar and salt method, moisture content was decreased rapidly by 20% and 24%, respectively during 12 hours. Compared with the sugar and salt solution method, the dry sugar and salt method was more effective in reducing moisture content during 12 hours. In the case of osmotic dehydration of the apple parts in the dry sugar method, the moisture content of the flesh, flesh including peel, and peel of apple decreased by 23%, 20%, and 16%, respectively during 6 hours. However, in the dry salt method, the moisture content of the flesh, flesh including peel, and peel of apple decreased by 19%, 12% and 13%, respectively during 2 hours. During this time, the pH tended to decrease, regardless of the presence of sugar and salt. Total acidity was slightly increased in the case of salt. In hot air drying after osmotic dehydration, the moisture content of flesh including peel of apple decreased from 64% and 67% to 31% and 27%, respectively at 90 minutes, and from 64% and 67% to 11% and 18% at 150 minutes, respectively. The moisture content of the peel decreased from 51% to 10% at 120 minutes. As a result of the sensory evaluation, the overall acceptance of the flesh and flesh including peel was highly evaluated, resultantly, the products were considered to be suitable for the production of gochujang apple jangachi.

Salt treatment for recovery of the mud loach, Misgurnus mizolepis from transport stress

  • Yu, Jin-Ha;Kim, Dae-Hyun;Han, Jung-Jo;Park, Sung-Woo
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.4
    • /
    • pp.215-221
    • /
    • 2016
  • Due to the shortage of the fingerling/juvenile mud loach, Misgurnus mizolepis in Korea, these fish have been imported from China. However, the mortality rate during and after their transportation is very high. In this study, we examined various physiological and histological parameters to evaluate the effect of salt treatment on the survival and recovery of mud loaches in holding farms during the quarantine process. Glucose, osmolality, $Na^+$, $Cl^-$, and histological changes were assessed for three different salinities. Non-treated fish (control 0.0%) exhibited lower levels of osmolality, and $Na^+$ and $Cl^-$ concentrations compared with those kept in solar salt solution (0.5% and 1.0%). Glucose levels in control fish were higher than those in fish exposed to 0.5% and 1.0% solar salt solution. Histologically, control fish showed thinner epidermis of skin, branchial hyperplasia and lamellar fusion with an abundance of eosinophilic granule cell-like cells. After solar salt solution treatment, damaged gill structures in the fish almost recovered within 5 days. The present study demonstrates that mud loaches transported from China suffer from skin and gill damage and physiological dysfunction which may increase the mortality and morbidity. Moreover, saline treatment might alleviate the stress responses and ionic/osmotic imbalances, and help heal gill damage.