• Title/Summary/Keyword: osmotic pressure

Search Result 209, Processing Time 0.031 seconds

Isolation of Protoplasts from Tomato Root by Two-step Osmotic Treatment (토마토 뿌리조직으로부터 두 단계 삼투압 처리에 의한 원형질체의 분리)

  • Shin, Dae-Seop;Han, Min-Woo;Kim, Young-Kee
    • Applied Biological Chemistry
    • /
    • v.47 no.2
    • /
    • pp.192-196
    • /
    • 2004
  • In order to measure cellular physiological activity including ion channel activity, protoplasts were isolated from the root tissue of tomato plant. The general methods recommended were not efficient enough to make protoplasts from the root tissue. Among various conditions tested, we found that a two-step treatment of osmosis is very efficient for the isolation of protoplasts. In this procedure, root tissues were preincubated in a solution containing 300 mM sorbitol for 30 min. Then, they moved to the reaction solution containing 700 mM sorbitol as well as cell wall-digesting enzymes. The formation of protoplast was greatly increased by this method. In order to find the optimal condition of the two-step method, various conditions of pH, osmotic pressure, incubation time, and the concentrations of cell wall-digesting enzymes were tested. The yield of protoplast isolation was maximal at pH 5.0 after 2 hr incubation. Mixed enzymes of 3% cellulase, 1 % macerozyme, and 0.1 % pectolyase showed maximal protoplast isolation. The physiological activity of isolated protoplast evaluated by measuring the cellular ATPase activity was as high as that measured from the preparation of root tissue. The protoplasts isolated by this method were remained healthy up to 4 hrs which is enough time to measure the cellular physiological activity. These results show that the two-step treatment of osmotic pressure was successful to obtain high yield of healthy protoplast from tomato root tissue.

Characteristics of water relations paramenters obtained from pressure-volume curves in pinus koraiensis needles (P-V 曲線法에 의한 잣나무葉에 水分 特性에 關한 硏究)

  • Han, Sang-Sup
    • The Korean Journal of Ecology
    • /
    • v.15 no.1
    • /
    • pp.47-58
    • /
    • 1992
  • This study is to investigate the change of the seasonal patterns of relative water relations parameters by the pressure-volume curves in pinus koraiensis needles. The osmotic potentials at full water saturated(Ψ0, sat) and at incipient plasmolysis(Ψ0, tlp) increased in growing season, while decreased in non-growing season. The maximum bulk modulus of elasticity(Emax), relative water content(RWCTLP), and relativefree water content(FWCtlp) at incipient plasmolysis in non-growing season were higher than these of growing season. The maximum pressure potential(Ψp, max) varied from 1.16 to 2.18MPa, torgor index(TI) varied from 3.1 to 4.7. The osmole number(Ns/dw) and symplastic water (Vo/DW) were variable seasonally. The maximum water content(Vt/DW) and apoplastic water(AW) were relatively high in early growing stage, and then decreased to needle aging. The pressure potential(Ψp) and water potential(Ψ) in winter needles were rapidly decreased with decreasing of relative water content. The matric potential occupied over 10 percent of water potential with less than-2.0 MPa.

  • PDF

Studies on the Shade Tolerance, Light Requirement, and Water Relations of Economic Tree Species(III) - Analysis of Pressure-Volume Curves on the Changes of Tissue Water Relations of Five Deciduous Hardwood Species Subjected to Artificial Shading Treatments - (주요경제수종(主要經濟樹種)의 내음성(耐陰性) 및 광선요구도(光線要求度)와 수분특성(水分特性)에 관한 연구(III) - 인공피음처리하(人工被陰處理下)에서 자라는 활엽수(闊葉樹) 5수종(樹種)의 수분특성(水分特性) 변화(變化)에 대한 P-V곡선(曲線) 분석(分析) -)

  • Choi, Jeong Ho;Kwon, Ki Won
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.4
    • /
    • pp.524-534
    • /
    • 2001
  • The pressure-volume curve parameters were investigated to elucidate the effects of shading treatment on the water relations of the one year old seedlings of Betula platyphylla var. japonica, Betula schmidtii, Zelkova serrata, Acer mono and Prunes sargentii subjected to five levels of artificial shading treatments. The osmotic potentials at full turgor(${\phi}_{{\pi}o}$) measured under full sunlight changed with species and growing season in the ranges of -1.04~-1.27MPa, -1.03~-1.48MPa, -0.94~-1.44MPa in first year treatment, and -0.90~-1.37MPa, -1.05~-1.79MPa, -0.99~-1.30MPa in second year treatment in June, July, and September, respectively. The osmotic potentials at full turgor increased with increment of shading level in the ranges of -0.90~-1.79MPa in full sunlight and -0.58~-1.23MPa in nearly full shading level(E) through the growing seasons in all the species studied. The osmotic potentials at turgor loss point(${\phi}_{{\pi}p}$) measured in full sunlight changed in the ranges of -1.64~-2.11MPa, -1.67~-2.15MPa, -1.47~-2.11MPa, and -1.45~-2.04MPa, -1.30~-2.00MPa, -1.28~-2.33MPa in June, July, and September of first and second years, respectively. Most of ${\phi}_{{\pi}p}$ measurements were lower within about 0.5MPa in comparison with those of ${\phi}_{{\pi}o}$. The measurements of ${\phi}_{{\pi}p}$ also increased with increment of shading level, and the differences in ${\phi}_{{\pi}p}$ among shading levels were generally greater than those in ${\phi}_{{\pi}o}$ by species and by growing season. Most of the osmotic potentials at turgor loss point as like as at full turgor were lowered in July than in June and September. The measurements of relative water content at turgor lass point(RWCp) in full sunlight were in the similar ranges of 81~88%, 71~86%, 75~84%, and 82~87, 72~84%, 76~86% in June, July, and September of first and second years, respectively. The RWCp were a little higher in A. mono and P. sargentii than in B. platyphylla var. japonica, B. schmidtii, and Z. serrata. The RWCp also decreased from 71~88% in full sunlight to 48~77% in nearly full shading treatment with increment of shading level. Even if there were some exceptions by species or by growing season, the shading effects on the changes in some P-V parameters were distinctly observed in the present study. The change in P-V parameters following shading treatment may be presumably inferred on the changes in solute accumulation, membrane elasticity, symplasmic water volume, and so on. But much more experiments should be necessarily continued for getting detailed informations on the physiological mechanism of shading effects relating to the changes in P-V parameters.

  • PDF

고삼투압이 재조합 Erythropoietin의 생산과 당쇄구조에 미치는 효과

  • Jeong, Yeon-Tae;Kim, Jeong-Hoe
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.221-224
    • /
    • 2001
  • Effect of hyperosmotic pressure on growth of recombinant Chinese hamster 。 vary cells and Erythropoietin (EPO) production was investigated. Cells were cultivated in batch modes at various osmolalities. When the osmolality increased from 314 to 463mOsm/Kg, specific EPO productivity (qp) was increased up to 1.6-fold but cell growth was inhibited. EPO has a complex oligosaccharide structure that plays an important role in biological activity in vivo. To investigate the influence of hypoerosmotic pressure on the glycosylation, structural analysis of oligosaccharide was calTied out. Recombinant human EPO was produced by CHO cells grown under various osmotic pressure and purified from culture supernatants by heparin-sepharose affinity column and immunoaffinity column. N-linked oligosaccharides were released enzymatically and isolated by paper chromatography. The isolated oligosaccharides were labeled with fluorescent dye, 2-aminobenzamide and analyzed with MonoQ anion exchange chromatography and GlycosepN amide chromatography for the assignment of GU (glucose unit) value. Glycan analysis by HPLC showed that neutral (asialo) oligosaccharide was increased slightly with an increase in osmolality. In portion of sialylated glycan, total relative amount of mono- and di-sialyated glycan was increased but that of tri- and tetra-sialylated glycan decreased as osmolality was increased.

  • PDF

Theoretical and Simulation Study of Thermo-Osmosis of Liquid in Microchannel (마이크로 채널 내 액체에서의 열삼투현상에 대한 이론 및 시뮬레이션 연구)

  • Han, Min-Sub
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.131-138
    • /
    • 2005
  • Thermo-osmosis of liquids in a microscale channel is investigated by theoretical and simulation study. From the basic set of conservation equations, the temperature and velocity distributions are derived in the function of the given temperatures and pressure gradient. The pressure gradient for a given temperature gradient is then obtained by the molecular simulation. It is shown that the temperature gradient tangential to the surface induces the pressure gradient and thus the flow in the interfacial region between the liquid and channel surface. The thermo-osmotic flow is proportional to the applied temperature gradient, and the factor of proportionality depends on temperature and intermolecular potential. The origin and characteristics of the phenomenon are discussed in molecular details.

Prediction of solute rejection and modelling of steady-state concentration polarisation effects in pressure-driven membrane filtration using computational fluid dynamics

  • Keir, Greg;Jegatheesan, Veeriah
    • Membrane and Water Treatment
    • /
    • v.3 no.2
    • /
    • pp.77-98
    • /
    • 2012
  • A two-dimensional (2D) steady state numerical model of concentration polarisation (CP) phenomena in a membrane channel has been developed using the commercially available computational fluid dynamics (CFD) package CFX (Ansys, Inc., USA). The model incorporates the transmembrane pressure (TMP), axially variable permeate flux, variable diffusivity and viscosity, and osmotic pressure effects. The model has been verified against several benchmark analytical and empirical solutions from the membrane literature. Additionally, the model is able to predict the rejection of an arbitrary solute by the membrane using a pore model, given some basic knowledge of the geometry of the solute molecule or particle, and the membrane pore geometry. This allows for predictive design of membrane systems without experimental determination of the membrane rejection for the specified operating conditions. A demonstration of the model is presented against experimental results for two uncharged test compounds (sucrose and PEG1000) from the literature. The model will be extended to incorporate charge effects, transient simulations, three-dimensional (3D) geometry and turbulent effects in future work.

Role of Aquaporins in Body Fluid Homeostasis

  • Jung, Jin-Sup;Kim, Yong-Keun;Lee, Sang-Ho
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.28-28
    • /
    • 1999
  • The movement of water across cell plasma membranes occurs in all cell types but is particularly rapid in erythrocytes, renal tubular cells. In principle, osmotic/oncotic gradients and hydrostatic pressure difference can drive water across a cell layer by transcellular or paracellular pathways. The aquaporin family of molecular water channels, which now number 10 in mammals and many more in plants and lower organism, are likely to provide a molecular pathway for water transport in some cell membranes.(omitted)

  • PDF

Effect of Water-Soluble Carriers on Water-Absorption and Swelling of Polydimethylsiloxane-5-Fluorouracil Devices

  • O, Sung-Il;Lee, Chi-Young;Kim, Sung-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.16 no.3
    • /
    • pp.101-105
    • /
    • 1986
  • The changes of water absorption and surface area of polydimethylsiloxane-5-fluorouracil devices containing different water soluble additives such as sodium chloride, glycerine, poly-propylene glycol(PPG 400), and polyethylene oxide(PEO 400, 400 and 2000) were investigated. It was confirmed that carriers controlled water absorption and swelling of the devices in the aqueous solutions. The water absorption and the swelling were affected by the osmotic pressure and ionic strength of the aqueous solutions.

  • PDF

Effect of the Temperature and Pressure on Pressure Retarded Osmosis Performance (온도와 압력 변화가 압력지연삼투 공정 성능에 미치는 영향)

  • Sim, Jin-woo;Nam, Sook-Hyun;Koo, Jae-Wuk;Kim, Eun-Ju;Yoon, Young Han;Hwang, Tae-Mun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.321-325
    • /
    • 2016
  • The Pressure Retarded Osmosis (PRO) is the next generation desalination technique and is considered as a eco-friendly energy. This was conducted to evaluate the effect of the temperature and pressure on the PRO performance. The flux of the permeation was measured under different operating conditions and estimated the power density. An improvement of PRO performance is depend on increasing solution temperature and optimum pressure. The effect of increasing feed solution temperature has stronger impact on the PRO performance comparing to the draw solution temperature. The reason of the results was due to the change of osmotic power, viscosity, water permeability and structure parameter(s).

Comparative Water Relations of Quercus acuta and Castanopsis cuspidata var sieboldii in Early Winter (붉가시나무(Quercus acuta)와 구실잣밤나무(Castanopsis cuspidata var, sieboldii)의 초겨울 비교 수분 관계)

  • Park, Bum-Jin;Park, Yong-Sam;Park, Yong-Mok
    • The Korean Journal of Ecology
    • /
    • v.28 no.4
    • /
    • pp.231-235
    • /
    • 2005
  • Comparative water relations of Quercus acuta and Castanopsis cuspidata var, sieboldii were analyzed to assess their resistance to drought and low temperature stresses from early November to early December, As air temperature decreased both species showed an increased content of osmotically active solute concentration per unit of dry weight (NS/DW), leading to lower osmotic potential of both species at both full turgid state $(OP_{sat})$ and turgor loss point $(OP_{tlp})$ in December than November. No major difference in the ability to adjust osmotically was noticed between the two. This finding suggests that both species must respond adaptively under water and low temperature stresses to maintain turgor pressure in winter season. In addition to osmotic adjustment, a low bulk modulus of elasticity $(E_{max})$ shown in Castanopsis cuspidata var. sieboldii must also play an important role in turgor maintenance during winter season being apt to happen water and low temperature stresses in plants.